We prove that the combination of a target network and over-parameterized linear function approximation establishes a weaker convergence condition for bootstrapped value estimation in certain cases, even with off-policy data. Our condition is naturally satisfied for expected updates over the entire state-action space or learning with a batch of complete trajectories from episodic Markov decision processes. Notably, using only a target network or an over-parameterized model does not provide such a convergence guarantee. Additionally, we extend our results to learning with truncated trajectories, showing that convergence is achievable for all tasks with minor modifications, akin to value truncation for the final states in trajectories. Our primary result focuses on temporal difference estimation for prediction, providing high-probability value estimation error bounds and empirical analysis on Baird's counterexample and a Four-room task. Furthermore, we explore the control setting, demonstrating that similar convergence conditions apply to Q-learning.
Anomaly synthesis strategies can effectively enhance unsupervised anomaly detection. However, existing strategies have limitations in the coverage and controllability of anomaly synthesis, particularly for weak defects that are very similar to normal regions. In this paper, we propose Global and Local Anomaly co-Synthesis Strategy (GLASS), a novel unified framework designed to synthesize a broader coverage of anomalies under the manifold and hypersphere distribution constraints of Global Anomaly Synthesis (GAS) at the feature level and Local Anomaly Synthesis (LAS) at the image level. Our method synthesizes near-in-distribution anomalies in a controllable way using Gaussian noise guided by gradient ascent and truncated projection. GLASS achieves state-of-the-art results on the MVTec AD (detection AUROC of 99.9\%), VisA, and MPDD datasets and excels in weak defect detection. The effectiveness and efficiency have been further validated in industrial applications for woven fabric defect detection. The code and dataset are available at: \url{//github.com/cqylunlun/GLASS}.
Proteins are fundamental components of biological systems and can be represented through various modalities, including sequences, structures, and textual descriptions. Despite the advances in deep learning and scientific large language models (LLMs) for protein research, current methodologies predominantly focus on limited specialized tasks -- often predicting one protein modality from another. These approaches restrict the understanding and generation of multimodal protein data. In contrast, large multimodal models have demonstrated potential capabilities in generating any-to-any content like text, images, and videos, thus enriching user interactions across various domains. Integrating these multimodal model technologies into protein research offers significant promise by potentially transforming how proteins are studied. To this end, we introduce HelixProtX, a system built upon the large multimodal model, aiming to offer a comprehensive solution to protein research by supporting any-to-any protein modality generation. Unlike existing methods, it allows for the transformation of any input protein modality into any desired protein modality. The experimental results affirm the advanced capabilities of HelixProtX, not only in generating functional descriptions from amino acid sequences but also in executing critical tasks such as designing protein sequences and structures from textual descriptions. Preliminary findings indicate that HelixProtX consistently achieves superior accuracy across a range of protein-related tasks, outperforming existing state-of-the-art models. By integrating multimodal large models into protein research, HelixProtX opens new avenues for understanding protein biology, thereby promising to accelerate scientific discovery.
Distortions caused by low-light conditions are not only visually unpleasant but also degrade the performance of computer vision tasks. The restoration and enhancement have proven to be highly beneficial. However, there are only a limited number of enhancement methods explicitly designed for videos acquired in low-light conditions. We propose a Spatio-Temporal Aligned SUNet (STA-SUNet) model using a Swin Transformer as a backbone to capture low light video features and exploit their spatio-temporal correlations. The STA-SUNet model is trained on a novel, fully registered dataset (BVI), which comprises dynamic scenes captured under varying light conditions. It is further analysed comparatively against various other models over three test datasets. The model demonstrates superior adaptivity across all datasets, obtaining the highest PSNR and SSIM values. It is particularly effective in extreme low-light conditions, yielding fairly good visualisation results.
We introduce a practical sign-dependent sequence selection metric for probabilistic amplitude shaping and propose a simple method to predict the gains in signal-to-noise ratio (SNR) for sequence selection. The proposed metric provides a $0.5$ dB SNR gain for single-polarized 256-QAM transmission over a long-haul fiber link.
Brain decoding that classifies cognitive states using the functional fluctuations of the brain can provide insightful information for understanding the brain mechanisms of cognitive functions. Among the common procedures of decoding the brain cognitive states with functional magnetic resonance imaging (fMRI), extracting the time series of each brain region after brain parcellation traditionally averages across the voxels within a brain region. This neglects the spatial information among the voxels and the requirement of extracting information for the downstream tasks. In this study, we propose to use a fully connected neural network that is jointly trained with the brain decoder to perform an adaptively weighted average across the voxels within each brain region. We perform extensive evaluations by cognitive state decoding, manifold learning, and interpretability analysis on the Human Connectome Project (HCP) dataset. The performance comparison of the cognitive state decoding presents an accuracy increase of up to 5\% and stable accuracy improvement under different time window sizes, resampling sizes, and training data sizes. The results of manifold learning show that our method presents a considerable separability among cognitive states and basically excludes subject-specific information. The interpretability analysis shows that our method can identify reasonable brain regions corresponding to each cognitive state. Our study would aid the improvement of the basic pipeline of fMRI processing.
A new decoder for the SIF test problems of the CUTEst collection is described, which produces problem files allowing the computation of values and derivatives of the objective function and constraints of most \cutest\ problems directly within ``native'' Matlab, Python or Julia, without any additional installation or interfacing with MEX files or Fortran programs. When used with Matlab, the new problem files optionally support reduced-precision computations.
Pairwise likelihood offers a useful approximation to the full likelihood function for covariance estimation in high-dimensional context. It simplifies high-dimensional dependencies by combining marginal bivariate likelihood objects, thereby making estimation more manageable. In certain models, including the Gaussian model, both pairwise and full likelihoods are known to be maximized by the same parameter values, thus retaining optimal statistical efficiency, when the number of variables is fixed. Leveraging this insight, we introduce the estimation of sparse high-dimensional covariance matrices by maximizing a truncated version of the pairwise likelihood function, which focuses on pairwise terms corresponding to nonzero covariance elements. To achieve a meaningful truncation, we propose to minimize the discrepancy between pairwise and full likelihood scores plus an L1-penalty discouraging the inclusion of uninformative terms. Differently from other regularization approaches, our method selects whole pairwise likelihood objects rather than individual covariance parameters, thus retaining the inherent unbiasedness of the pairwise likelihood estimating equations. This selection procedure is shown to have the selection consistency property as the covariance dimension increases exponentially fast. As a result, the implied pairwise likelihood estimator is consistent and converges to the oracle maximum likelihood estimator that assumes knowledge of nonzero covariance entries.
Nonlinear activation functions are pivotal to the success of deep neural nets, and choosing the appropriate activation function can significantly affect their performance. Most networks use fixed activation functions (e.g., ReLU, GELU, etc.), and this choice might limit their expressiveness. Furthermore, different layers may benefit from diverse activation functions. Consequently, there has been a growing interest in trainable activation functions. In this paper, we introduce DiTAC, a trainable highly-expressive activation function based on an efficient diffeomorphic transformation (called CPAB). Despite introducing only a negligible number of trainable parameters, DiTAC enhances model expressiveness and performance, often yielding substantial improvements. It also outperforms existing activation functions (regardless whether the latter are fixed or trainable) in tasks such as semantic segmentation, image generation, regression problems, and image classification. Our code is available at //github.com/BGU-CS-VIL/DiTAC.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.