Secure outsourced computation is critical for cloud computing to safeguard data confidentiality and ensure data usability. Recently, secure outsourced computation schemes following a twin-server architecture based on partially homomorphic cryptosystems have received increasing attention. The Secure Outsourced Computation on Integers (SOCI) [1] toolkit is the state-of-the-art among these schemes which can perform secure computation on integers without requiring the costly bootstrapping operation as in fully homomorphic encryption; however, SOCI suffers from relatively large computation and communication overhead. In this paper, we propose SOCI+ which significantly improves the performance of SOCI. Specifically, SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive, and supports a suite of efficient secure arithmetic computation on integers protocols, including a secure multiplication protocol (SMUL), a secure comparison protocol (SCMP), a secure sign bit-acquisition protocol (SSBA), and a secure division protocol (SDIV), all based on the (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption. In addition, SOCI+ incorporates an offline and online computation mechanism to further optimize its performance. We perform rigorous theoretical analysis to prove the correctness and security of SOCI+. Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
Our objective is to protect the integrity and confidentiality of applications operating in untrusted environments. Trusted Execution Environments (TEEs) are not a panacea. Hardware TEEs fail to protect applications against Sybil, Fork and Rollback Attacks and, consequently, fail to preserve the consistency and integrity of applications. We introduce a novel system, LLD, that enforces the integrity and consistency of applications in a transparent and scalable fashion. Our solution augments TEEs with instantiation control and rollback protection. Instantiation control, enforced with TEE-supported leases, mitigates Sybil/Fork Attacks without incurring the high costs of solving crypto-puzzles. Our rollback detection mechanism does not need excessive replication, nor does it sacrifice durability. We show that implementing these functionalities in the LLD runtime automatically protects applications and services such as a popular DBMS.
Cloud services are omnipresent and critical cloud service failure is a fact of life. In order to retain customers and prevent revenue loss, it is important to provide high reliability guarantees for these services. One way to do this is by predicting outages in advance, which can help in reducing the severity as well as time to recovery. It is difficult to forecast critical failures due to the rarity of these events. Moreover, critical failures are ill-defined in terms of observable data. Our proposed method, Outage-Watch, defines critical service outages as deteriorations in the Quality of Service (QoS) captured by a set of metrics. Outage-Watch detects such outages in advance by using current system state to predict whether the QoS metrics will cross a threshold and initiate an extreme event. A mixture of Gaussian is used to model the distribution of the QoS metrics for flexibility and an extreme event regularizer helps in improving learning in tail of the distribution. An outage is predicted if the probability of any one of the QoS metrics crossing threshold changes significantly. Our evaluation on a real-world SaaS company dataset shows that Outage-Watch significantly outperforms traditional methods with an average AUC of 0.98. Additionally, Outage-Watch detects all the outages exhibiting a change in service metrics and reduces the Mean Time To Detection (MTTD) of outages by up to 88% when deployed in an enterprise cloud-service system, demonstrating efficacy of our proposed method.
Cloud analysis is a critical component of weather and climate science, impacting various sectors like disaster management. However, achieving fine-grained cloud analysis, such as cloud segmentation, in remote sensing remains challenging due to the inherent difficulties in obtaining accurate labels, leading to significant labeling errors in training data. Existing methods often assume the availability of reliable segmentation annotations, limiting their overall performance. To address this inherent limitation, we introduce an innovative model-agnostic Cloud Adaptive-Labeling (CAL) approach, which operates iteratively to enhance the quality of training data annotations and consequently improve the performance of the learned model. Our methodology commences by training a cloud segmentation model using the original annotations. Subsequently, it introduces a trainable pixel intensity threshold for adaptively labeling the cloud training images on the fly. The newly generated labels are then employed to fine-tune the model. Extensive experiments conducted on multiple standard cloud segmentation benchmarks demonstrate the effectiveness of our approach in significantly boosting the performance of existing segmentation models. Our CAL method establishes new state-of-the-art results when compared to a wide array of existing alternatives.
Inference optimizations are critical for improving user experience and reducing infrastructure costs and power consumption. In this article, we illustrate a form of dynamic execution known as speculative sampling to reduce the overall latency of text generation and compare it with standard autoregressive sampling. This can be used together with model-based optimizations (e.g. quantization) to provide an optimized solution. Both sampling methods make use of KV caching. A Jupyter notebook and some sample executions are provided.
Advances in ML have motivated the design of video analytics systems that allow for structured queries over video datasets. However, existing systems limit query expressivity, require users to specify an ML model per predicate, rely on complex optimizations that trade off accuracy for performance, and return large amounts of redundant and low-quality results. This paper focuses on the recently developed Vision-Language Models (VLMs) that allow users to query images using natural language like "cars during daytime at traffic intersections." Through an in-depth analysis, we show VLMs address three limitations of current video analytics systems: general expressivity, a single general purpose model to query many predicates, and are both simple and fast. However, VLMs still return large numbers of redundant and low-quality results that can overwhelm and burden users. In addition, VLMs often require manual prompt engineering to improve result relevance. We present Zelda: a video analytics system that uses VLMs to return both relevant and semantically diverse results for top-K queries on large video datasets. Zelda prompts the VLM with the user's query in natural language. Zelda then automatically adds discriminator and synonym terms to boost accuracy, and terms to identify low-quality frames. To improve result diversity, Zelda uses semantic-rich VLM embeddings in an algorithm that prunes similar frames while considering their relevance to the query and the number of top-K results requested. We evaluate Zelda across five datasets and 19 queries and quantitatively show it achieves higher mean average precision (up to 1.15x) and improves average pairwise similarity (up to 1.16x) compared to using VLMs out-of-the-box. We also compare Zelda to a state-of-the-art video analytics engine and show that Zelda retrieves results 7.5x (up to 10.4x) faster for the same accuracy and frame diversity.
Temporal data, notably time series and spatio-temporal data, are prevalent in real-world applications. They capture dynamic system measurements and are produced in vast quantities by both physical and virtual sensors. Analyzing these data types is vital to harnessing the rich information they encompass and thus benefits a wide range of downstream tasks. Recent advances in large language and other foundational models have spurred increased use of these models in time series and spatio-temporal data mining. Such methodologies not only enable enhanced pattern recognition and reasoning across diverse domains but also lay the groundwork for artificial general intelligence capable of comprehending and processing common temporal data. In this survey, we offer a comprehensive and up-to-date review of large models tailored (or adapted) for time series and spatio-temporal data, spanning four key facets: data types, model categories, model scopes, and application areas/tasks. Our objective is to equip practitioners with the knowledge to develop applications and further research in this underexplored domain. We primarily categorize the existing literature into two major clusters: large models for time series analysis (LM4TS) and spatio-temporal data mining (LM4STD). On this basis, we further classify research based on model scopes (i.e., general vs. domain-specific) and application areas/tasks. We also provide a comprehensive collection of pertinent resources, including datasets, model assets, and useful tools, categorized by mainstream applications. This survey coalesces the latest strides in large model-centric research on time series and spatio-temporal data, underscoring the solid foundations, current advances, practical applications, abundant resources, and future research opportunities.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.