亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of approximating the eigenspectrum of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ with bounded entries (i.e., $\|A\|_{\infty} \leq 1$). We present a simple sublinear time algorithm that approximates all eigenvalues of $A$ up to additive error $\pm \epsilon n$ using those of a randomly sampled $\tilde{O}(\frac{1}{\epsilon^4}) \times \tilde O(\frac{1}{\epsilon^4})$ principal submatrix. Our result can be viewed as a concentration bound on the full eigenspectrum of a random principal submatrix. It significantly extends existing work which shows concentration of just the spectral norm [Tro08]. It also extends work on sublinear time algorithms for testing the presence of large negative eigenvalues in the spectrum [BCJ20]. To complement our theoretical results, we provide numerical simulations, which demonstrate the effectiveness of our algorithm in approximating the eigenvalues of a wide range of matrices.

相關內容

We present novel analysis and algorithms for solving sparse phase retrieval and sparse principal component analysis (PCA) with convex lifted matrix formulations. The key innovation is a new mixed atomic matrix norm that, when used as regularization, promotes low-rank matrices with sparse factors. We show that convex programs with this atomic norm as a regularizer provide near-optimal sample complexity and error rate guarantees for sparse phase retrieval and sparse PCA. While we do not know how to solve the convex programs exactly with an efficient algorithm, for the phase retrieval case we carefully analyze the program and its dual and thereby derive a practical heuristic algorithm. We show empirically that this practical algorithm performs similarly to existing state-of-the-art algorithms.

We are interested in the optimization of convex domains under a PDE constraint. Due to the difficulties of approximating convex domains in $\mathbb{R}^3$, the restriction to rotationally symmetric domains is used to reduce shape optimization problems to a two-dimensional setting. For the optimization of an eigenvalue arising in a problem of optimal insulation, the existence of an optimal domain is proven. An algorithm is proposed that can be applied to general shape optimization problems under the geometric constraints of convexity and rotational symmetry. The approximated optimal domains for the eigenvalue problem in optimal insulation are discussed.

We study the problem of \emph{dynamic regret minimization} in $K$-armed Dueling Bandits under non-stationary or time varying preferences. This is an online learning setup where the agent chooses a pair of items at each round and observes only a relative binary `win-loss' feedback for this pair, sampled from an underlying preference matrix at that round. We first study the problem of static-regret minimization for adversarial preference sequences and design an efficient algorithm with $O(\sqrt{KT})$ high probability regret. We next use similar algorithmic ideas to propose an efficient and provably optimal algorithm for dynamic-regret minimization under two notions of non-stationarities. In particular, we establish $\tO(\sqrt{SKT})$ and $\tO({V_T^{1/3}K^{1/3}T^{2/3}})$ dynamic-regret guarantees, $S$ being the total number of `effective-switches' in the underlying preference relations and $V_T$ being a measure of `continuous-variation' non-stationarity. The complexity of these problems have not been studied prior to this work despite the practicability of non-stationary environments in real world systems. We justify the optimality of our algorithms by proving matching lower bound guarantees under both the above-mentioned notions of non-stationarities. Finally, we corroborate our results with extensive simulations and compare the efficacy of our algorithms over state-of-the-art baselines.

In this paper, we develop deterministic fully dynamic algorithms for computing approximate distances in a graph with worst-case update time guarantees. In particular we obtain improved dynamic algorithms that, given an unweighted and undirected graph $G=(V,E)$ undergoing edge insertions and deletions, and a parameter $0 < \epsilon \leq 1$, maintain $(1+\epsilon)$-approximations of the $st$ distance of a single pair of nodes, the distances from a single source to all nodes ("SSSP"), the distances from multiple sources to all nodes ("MSSP''), or the distances between all nodes ("APSP"). Our main result is a deterministic algorithm for maintaining $(1+\epsilon)$-approximate single-source distances with worst-case update time $O(n^{1.529})$ (for the current best known bound on the matrix multiplication coefficient $\omega$). This matches a conditional lower bound by [BNS, FOCS 2019]. We further show that we can go beyond this SSSP bound for the problem of maintaining approximate $st$ distances by providing a deterministic algorithm with worst-case update time $O(n^{1.447})$. This even improves upon the fastest known randomized algorithm for this problem. At the core, our approach is to combine algebraic distance maintenance data structures with near-additive emulator constructions. This also leads to novel dynamic algorithms for maintaining $(1+\epsilon, \beta)$-emulators that improve upon the state of the art, which might be of independent interest. Our techniques also lead to improvements for randomized approximate diameter maintenance.

We develop machinery to design efficiently computable and consistent estimators, achieving estimation error approaching zero as the number of observations grows, when facing an oblivious adversary that may corrupt responses in all but an $\alpha$ fraction of the samples. As concrete examples, we investigate two problems: sparse regression and principal component analysis (PCA). For sparse regression, we achieve consistency for optimal sample size $n\gtrsim (k\log d)/\alpha^2$ and optimal error rate $O(\sqrt{(k\log d)/(n\cdot \alpha^2)})$ where $n$ is the number of observations, $d$ is the number of dimensions and $k$ is the sparsity of the parameter vector, allowing the fraction of inliers to be inverse-polynomial in the number of samples. Prior to this work, no estimator was known to be consistent when the fraction of inliers $\alpha$ is $o(1/\log \log n)$, even for (non-spherical) Gaussian design matrices. Results holding under weak design assumptions and in the presence of such general noise have only been shown in dense setting (i.e., general linear regression) very recently by d'Orsi et al. [dNS21]. In the context of PCA, we attain optimal error guarantees under broad spikiness assumptions on the parameter matrix (usually used in matrix completion). Previous works could obtain non-trivial guarantees only under the assumptions that the measurement noise corresponding to the inliers is polynomially small in $n$ (e.g., Gaussian with variance $1/n^2$). To devise our estimators, we equip the Huber loss with non-smooth regularizers such as the $\ell_1$ norm or the nuclear norm, and extend d'Orsi et al.'s approach [dNS21] in a novel way to analyze the loss function. Our machinery appears to be easily applicable to a wide range of estimation problems.

We consider the Dynamical Low Rank (DLR) approximation of random parabolic equations and propose a class of fully discrete numerical schemes. Similarly to the continuous DLR approximation, our schemes are shown to satisfy a discrete variational formulation. By exploiting this property, we establish stability of our schemes: we show that our explicit and semi-implicit versions are conditionally stable under a parabolic type CFL condition which does not depend on the smallest singular value of the DLR solution; whereas our implicit scheme is unconditionally stable. Moreover, we show that, in certain cases, the semi-implicit scheme can be unconditionally stable if the randomness in the system is sufficiently small. Furthermore, we show that these schemes can be interpreted as projector-splitting integrators and are strongly related to the scheme proposed by Lubich et al. [BIT Num. Math., 54:171-188, 2014; SIAM J. on Num. Anal., 53:917-941, 2015], to which our stability analysis applies as well. The analysis is supported by numerical results showing the sharpness of the obtained stability conditions.

We study the $c$-approximate near neighbor problem under the continuous Fr\'echet distance: Given a set of $n$ polygonal curves with $m$ vertices, a radius $\delta > 0$, and a parameter $k \leq m$, we want to preprocess the curves into a data structure that, given a query curve $q$ with $k$ vertices, either returns an input curve with Fr\'echet distance at most $c\cdot \delta$ to $q$, or returns that there exists no input curve with Fr\'echet distance at most $\delta$ to $q$. We focus on the case where the input and the queries are one-dimensional polygonal curves -- also called time series -- and we give a comprehensive analysis for this case. We obtain new upper bounds that provide different tradeoffs between approximation factor, preprocessing time, and query time. Our data structures improve upon the state of the art in several ways. We show that for any $0 < \varepsilon \leq 1$ an approximation factor of $(1+\varepsilon)$ can be achieved within the same asymptotic time bounds as the previously best result for $(2+\varepsilon)$. Moreover, we show that an approximation factor of $(2+\varepsilon)$ can be obtained by using preprocessing time and space $O(nm)$, which is linear in the input size, and query time in $O(\frac{1}{\varepsilon})^{k+2}$, where the previously best result used preprocessing time in $n \cdot O(\frac{m}{\varepsilon k})^k$ and query time in $O(1)^k$. We complement our upper bounds with matching conditional lower bounds based on the Orthogonal Vectors Hypothesis. Interestingly, some of our lower bounds already hold for any super-constant value of $k$. This is achieved by proving hardness of a one-sided sparse version of the Orthogonal Vectors problem as an intermediate problem, which we believe to be of independent interest.

In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower dimensional manifold, thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real life applications, data is often very noisy. In this work, we propose a method to approximate $\mathcal{M}$ a $d$-dimensional $C^{m+1}$ smooth submanifold of $\mathbb{R}^n$ ($d \ll n$) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located "near" the lower dimensional manifold and suggest a non-linear moving least-squares projection on an approximating $d$-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., $O(h^{m+1})$, where $h$ is the fill distance and $m$ is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension $n$. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司