亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we introduce a novel method for calculating the 6DoF pose of an object using a single RGB-D image. Unlike existing methods that either directly predict objects' poses or rely on sparse keypoints for pose recovery, our approach addresses this challenging task using dense correspondence, i.e., we regress the object coordinates for each visible pixel. Our method leverages existing object detection methods. We incorporate a re-projection mechanism to adjust the camera's intrinsic matrix to accommodate cropping in RGB-D images. Moreover, we transform the 3D object coordinates into a residual representation, which can effectively reduce the output space and yield superior performance. We conducted extensive experiments to validate the efficacy of our approach for 6D pose estimation. Our approach outperforms most previous methods, especially in occlusion scenarios, and demonstrates notable improvements over the state-of-the-art methods. Our code is available on //github.com/AI-Application-and-Integration-Lab/RDPN6D.

相關內容

Integrating visible and infrared images into one high-quality image, also known as visible and infrared image fusion, is a challenging yet critical task for many downstream vision tasks. Most existing works utilize pretrained deep neural networks or design sophisticated frameworks with strong priors for this task, which may be unsuitable or lack flexibility. This paper presents SimpleFusion, a simple yet effective framework for visible and infrared image fusion. Our framework follows the decompose-and-fusion paradigm, where the visible and the infrared images are decomposed into reflectance and illumination components via Retinex theory and followed by the fusion of these corresponding elements. The whole framework is designed with two plain convolutional neural networks without downsampling, which can perform image decomposition and fusion efficiently. Moreover, we introduce decomposition loss and a detail-to-semantic loss to preserve the complementary information between the two modalities for fusion. We conduct extensive experiments on the challenging benchmarks, verifying the superiority of our method over previous state-of-the-arts. Code is available at \href{//github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images}{//github.com/hxwxss/SimpleFusion-A-Simple-Fusion-Framework-for-Infrared-and-Visible-Images}

In this paper, we apply the Paired-Explicit Runge-Kutta (P-ERK) schemes by Vermeire et. al. (2019, 2022) to dynamically partitioned systems arising from adaptive mesh refinement. The P-ERK schemes enable multirate time-integration with no changes in the spatial discretization methodology, making them readily implementable in existing codes that employ a method-of-lines approach. We show that speedup compared to a range of state of the art Runge-Kutta methods can be realized, despite additional overhead due to the dynamic re-assignment of flagging variables and restricting nonlinear stability properties. The effectiveness of the approach is demonstrated for a range of simulation setups for viscous and inviscid convection-dominated compressible flows for which we provide a reproducibility repository. In addition, we perform a thorough investigation of the nonlinear stability properties of the Paired-Explicit Runge-Kutta schemes regarding limitations due to the violation of monotonicity properties of the underlying spatial discretization. Furthermore, we present a novel approach for estimating the relevant eigenvalues of large Jacobians required for the optimization of stability polynomials.

The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.

The goal of our work is to generate high-quality novel views from monocular videos of complex and dynamic scenes. Prior methods, such as DynamicNeRF, have shown impressive performance by leveraging time-varying dynamic radiation fields. However, these methods have limitations when it comes to accurately modeling the motion of complex objects, which can lead to inaccurate and blurry renderings of details. To address this limitation, we propose a novel approach that builds upon a recent generalization NeRF, which aggregates nearby views onto new viewpoints. However, such methods are typically only effective for static scenes. To overcome this challenge, we introduce a module that operates in both the time and frequency domains to aggregate the features of object motion. This allows us to learn the relationship between frames and generate higher-quality images. Our experiments demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets. Specifically, our approach outperforms existing methods in terms of both the accuracy and visual quality of the synthesized views. Our code is available on //github.com/xingy038/CTNeRF.

In this work, we address the challenge of reconstructing the complete 12-lead ECG signal from incomplete parts of it. We focus on two main scenarii: (i) reconstructing missing signal segments within an ECG lead and (ii) recovering missing leads from a single-lead. We propose a model with a U-Net architecture trained on a novel objective function to address the reconstruction problem. This function incorporates both spatial and temporal aspects of the ECG by combining the distance in amplitude between the reconstructed and real signals with the signal trend. Through comprehensive assessments using both a real-life dataset and a publicly accessible one, we demonstrate that the proposed approach consistently outperforms state-of-the-art methods based on generative adversarial networks and a CopyPaste strategy. Our proposed model demonstrates superior performance in standard distortion metrics and preserves critical ECG characteristics, particularly the P, Q, R, S, and T wave coordinates. Two emerging clinical applications emphasize the relevance of our work. The first is the increasing need to digitize paper-stored ECGs for utilization in AI-based applications (automatic annotation and risk-quantification), often limited to digital ECG complete 10s recordings. The second is the widespread use of wearable devices that record ECGs but typically capture only a small subset of the 12 standard leads. In both cases, a non-negligible amount of information is lost or not recorded, which our approach aims to recover to overcome these limitations.

In this work, we propose a Switch-Conformer-based MoE system named SC-MoE for unified streaming and non-streaming code-switching (CS) automatic speech recognition (ASR), where we design a streaming MoE layer consisting of three language experts, which correspond to Mandarin, English, and blank, respectively, and equipped with a language identification (LID) network with a Connectionist Temporal Classification (CTC) loss as a router in the encoder of SC-MoE to achieve a real-time streaming CS ASR system. To further utilize the language information embedded in text, we also incorporate MoE layers into the decoder of SC-MoE. In addition, we introduce routers into every MoE layer of the encoder and the decoder and achieve better recognition performance. Experimental results show that the SC-MoE significantly improves CS ASR performances over baseline with comparable computational efficiency.

In this paper, we propose a novel approach to enhance medical image segmentation during test time. Instead of employing hand-crafted transforms or functions on the input test image to create multiple views for test-time augmentation, we advocate for the utilization of an advanced domain-fine-tuned generative model (GM), e.g., stable diffusion (SD), for test-time augmentation. Given that the GM has been trained to comprehend and encapsulate comprehensive domain data knowledge, it is superior than segmentation models in terms of representing the data characteristics and distribution. Hence, by integrating the GM into test-time augmentation, we can effectively generate multiple views of a given test sample, aligning with the content and appearance characteristics of the sample and the related local data distribution. This approach renders the augmentation process more adaptable and resilient compared to conventional handcrafted transforms. Comprehensive experiments conducted across three medical image segmentation tasks (nine datasets) demonstrate the efficacy and versatility of the proposed TTGA in enhancing segmentation outcomes. Moreover, TTGA significantly improves pixel-wise error estimation, thereby facilitating the deployment of a more reliable segmentation system. Code will be released at: //github.com/maxiao0234/TTGA.

Neuromorphic processors are well-suited for efficiently handling sparse events from event-based cameras. However, they face significant challenges in the growth of computing demand and hardware costs as the input resolution increases. This paper proposes the Trainable Region-of-Interest Prediction (TRIP), the first hardware-efficient hard attention framework for event-based vision processing on a neuromorphic processor. Our TRIP framework actively produces low-resolution Region-of-Interest (ROIs) for efficient and accurate classification. The framework exploits sparse events' inherent low information density to reduce the overhead of ROI prediction. We introduced extensive hardware-aware optimizations for TRIP and implemented the hardware-optimized algorithm on the SENECA neuromorphic processor. We utilized multiple event-based classification datasets for evaluation. Our approach achieves state-of-the-art accuracies in all datasets and produces reasonable ROIs with varying locations and sizes. On the DvsGesture dataset, our solution requires 46x less computation than the state-of-the-art while achieving higher accuracy. Furthermore, TRIP enables more than 2x latency and energy improvements on the SENECA neuromorphic processor compared to the conventional solution.

Text-based 2D diffusion models have demonstrated impressive capabilities in image generation and editing. Meanwhile, the 2D diffusion models also exhibit substantial potentials for 3D editing tasks. However, how to achieve consistent edits across multiple viewpoints remains a challenge. While the iterative dataset update method is capable of achieving global consistency, it suffers from slow convergence and over-smoothed textures. We propose SyncNoise, a novel geometry-guided multi-view consistent noise editing approach for high-fidelity 3D scene editing. SyncNoise synchronously edits multiple views with 2D diffusion models while enforcing multi-view noise predictions to be geometrically consistent, which ensures global consistency in both semantic structure and low-frequency appearance. To further enhance local consistency in high-frequency details, we set a group of anchor views and propagate them to their neighboring frames through cross-view reprojection. To improve the reliability of multi-view correspondences, we introduce depth supervision during training to enhance the reconstruction of precise geometries. Our method achieves high-quality 3D editing results respecting the textual instructions, especially in scenes with complex textures, by enhancing geometric consistency at the noise and pixel levels.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司