The generative paradigm has become increasingly important in machine learning and deep learning models. Among popular generative models are normalizing flows, which enable exact likelihood estimation by transforming a base distribution through diffeomorphic transformations. Extending the normalizing flow framework to handle time-indexed flows gave dynamic normalizing flows, a powerful tool to model time series, stochastic processes, and neural stochastic differential equations (SDEs). In this work, we propose a novel variant of dynamic normalizing flows, a Time Changed Normalizing Flow (TCNF), based on time deformation of a Brownian motion which constitutes a versatile and extensive family of Gaussian processes. This approach enables us to effectively model some SDEs, that cannot be modeled otherwise, including standard ones such as the well-known Ornstein-Uhlenbeck process, and generalizes prior methodologies, leading to improved results and better inference and prediction capability.
Machine learning techniques, in particular the so-called normalizing flows, are becoming increasingly popular in the context of Monte Carlo simulations as they can effectively approximate target probability distributions. In the case of lattice field theories (LFT) the target distribution is given by the exponential of the action. The common loss function's gradient estimator based on the "reparametrization trick" requires the calculation of the derivative of the action with respect to the fields. This can present a significant computational cost for complicated, non-local actions like e.g. fermionic action in QCD. In this contribution, we propose an estimator for normalizing flows based on the REINFORCE algorithm that avoids this issue. We apply it to two dimensional Schwinger model with Wilson fermions at criticality and show that it is up to ten times faster in terms of the wall-clock time as well as requiring up to $30\%$ less memory than the reparameterization trick estimator. It is also more numerically stable allowing for single precision calculations and the use of half-float tensor cores. We present an in-depth analysis of the origins of those improvements. We believe that these benefits will appear also outside the realm of the LFT, in each case where the target probability distribution is computationally intensive.
Bayesian optimal experimental design (OED) seeks to conduct the most informative experiment under budget constraints to update the prior knowledge of a system to its posterior from the experimental data in a Bayesian framework. Such problems are computationally challenging because of (1) expensive and repeated evaluation of some optimality criterion that typically involves a double integration with respect to both the system parameters and the experimental data, (2) suffering from the curse-of-dimensionality when the system parameters and design variables are high-dimensional, (3) the optimization is combinatorial and highly non-convex if the design variables are binary, often leading to non-robust designs. To make the solution of the Bayesian OED problem efficient, scalable, and robust for practical applications, we propose a novel joint optimization approach. This approach performs simultaneous (1) training of a scalable conditional normalizing flow (CNF) to efficiently maximize the expected information gain (EIG) of a jointly learned experimental design (2) optimization of a probabilistic formulation of the binary experimental design with a Bernoulli distribution. We demonstrate the performance of our proposed method for a practical MRI data acquisition problem, one of the most challenging Bayesian OED problems that has high-dimensional (320 $\times$ 320) parameters at high image resolution, high-dimensional (640 $\times$ 386) observations, and binary mask designs to select the most informative observations.
Data augmentation (DA) is a powerful workhorse for bolstering performance in modern machine learning. Specific augmentations like translations and scaling in computer vision are traditionally believed to improve generalization by generating new (artificial) data from the same distribution. However, this traditional viewpoint does not explain the success of prevalent augmentations in modern machine learning (e.g. randomized masking, cutout, mixup), that greatly alter the training data distribution. In this work, we develop a new theoretical framework to characterize the impact of a general class of DA on underparameterized and overparameterized linear model generalization. Our framework reveals that DA induces implicit spectral regularization through a combination of two distinct effects: a) manipulating the relative proportion of eigenvalues of the data covariance matrix in a training-data-dependent manner, and b) uniformly boosting the entire spectrum of the data covariance matrix through ridge regression. These effects, when applied to popular augmentations, give rise to a wide variety of phenomena, including discrepancies in generalization between over-parameterized and under-parameterized regimes and differences between regression and classification tasks. Our framework highlights the nuanced and sometimes surprising impacts of DA on generalization, and serves as a testbed for novel augmentation design.
It is critical to deploy complicated neural network models on hardware with limited resources. This paper proposes a novel model quantization method, named the Low-Cost Proxy-Based Adaptive Mixed-Precision Model Quantization (LCPAQ), which contains three key modules. The hardware-aware module is designed by considering the hardware limitations, while an adaptive mixed-precision quantization module is developed to evaluate the quantization sensitivity by using the Hessian matrix and Pareto frontier techniques. Integer linear programming is used to fine-tune the quantization across different layers. Then the low-cost proxy neural architecture search module efficiently explores the ideal quantization hyperparameters. Experiments on the ImageNet demonstrate that the proposed LCPAQ achieves comparable or superior quantization accuracy to existing mixed-precision models. Notably, LCPAQ achieves 1/200 of the search time compared with existing methods, which provides a shortcut in practical quantization use for resource-limited devices.
The macro-element variant of the hybridized discontinuous Galerkin (HDG) method combines advantages of continuous and discontinuous finite element discretization. In this paper, we investigate the performance of the macro-element HDG method for the analysis of compressible flow problems at moderate Reynolds numbers. To efficiently handle the corresponding large systems of equations, we explore several strategies at the solver level. On the one hand, we devise a second-layer static condensation approach that reduces the size of the local system matrix in each macro-element and hence the factorization time of the local solver. On the other hand, we employ a multi-level preconditioner based on the FGMRES solver for the global system that integrates well within a matrix-free implementation. In addition, we integrate a standard diagonally implicit Runge-Kutta scheme for time integration. We test the matrix-free macro-element HDG method for compressible flow benchmarks, including Couette flow, flow past a sphere, and the Taylor-Green vortex. Our results show that unlike standard HDG, the macro-element HDG method can operate efficiently for moderate polynomial degrees, as the local computational load can be flexibly increased via mesh refinement within a macro-element. Our results also show that due to the balance of local and global operations, the reduction in degrees of freedom, and the reduction of the global problem size and the number of iterations for its solution, the macro-element HDG method can be a competitive option for the analysis of compressible flow problems.
We present a neuro-symbolic (NeSy) workflow combining a symbolic-based learning technique with a large language model (LLM) agent to generate synthetic data for code comment classification in the C programming language. We also show how generating controlled synthetic data using this workflow fixes some of the notable weaknesses of LLM-based generation and increases the performance of classical machine learning models on the code comment classification task. Our best model, a Neural Network, achieves a Macro-F1 score of 91.412% with an increase of 1.033% after data augmentation.
Testing for independence between two random vectors is a fundamental problem in statistics. It is observed from empirical studies that many existing omnibus consistent tests may not work well for some strongly nonmonotonic and nonlinear relationships. To explore the reasons behind this issue, we novelly transform the multivariate independence testing problem equivalently into checking the equality of two bivariate means. An important observation we made is that the power loss is mainly due to cancellation of positive and negative terms in dependence metrics, making them very close to zero. Motivated by this observation, we propose a class of consistent metrics with a positive integer $\gamma$ that exactly characterize independence. Theoretically, we show that the metrics with even and infinity $\gamma$ can effectively avoid the cancellation, and have high powers under the alternatives that two mean differences offset each other. Since we target at a wide range of dependence scenarios in practice, we further suggest to combine the p-values of test statistics with different $\gamma$'s through the Fisher's method. We illustrate the advantages of our proposed tests through extensive numerical studies.
We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.
Mendelian randomization uses genetic variants as instrumental variables to make causal inferences about the effects of modifiable risk factors on diseases from observational data. One of the major challenges in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the risk factor of interest, a setting known as many weak instruments. Many existing methods, such as the popular inverse-variance weighted (IVW) method, could be biased when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator, which is shown to be robust to many weak instruments, was recently proposed. However, this estimator still has non-ignorable bias when the effective sample size is small. In this paper, we propose a modified debiased IVW (mdIVW) estimator by multiplying a modification factor to the original dIVW estimator. After this simple correction, we show that the bias of the mdIVW estimator converges to zero at a faster rate than that of the dIVW estimator under some regularity conditions. Moreover, the mdIVW estimator has smaller variance than the dIVW estimator.We further extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the dIVW estimator through extensive simulation studies and real data analysis.
The growing availability of generative AI technologies such as large language models (LLMs) has significant implications for creative work. This paper explores twofold aspects of integrating LLMs into the creative process - the divergence stage of idea generation, and the convergence stage of evaluation and selection of ideas. We devised a collaborative group-AI Brainwriting ideation framework, which incorporated an LLM as an enhancement into the group ideation process, and evaluated the idea generation process and the resulted solution space. To assess the potential of using LLMs in the idea evaluation process, we design an evaluation engine and compared it to idea ratings assigned by three expert and six novice evaluators. Our findings suggest that integrating LLM in Brainwriting could enhance both the ideation process and its outcome. We also provide evidence that LLMs can support idea evaluation. We conclude by discussing implications for HCI education and practice.