亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A Collaborative Artificial Intelligence System (CAIS) works with humans in a shared environment to achieve a common goal. To recover from a disruptive event that degrades its performance and ensures its resilience, a CAIS may then need to perform a set of actions either by the system, by the humans, or collaboratively together. As for any other system, recovery actions may cause energy adverse effects due to the additional required energy. Therefore, it is of paramount importance to understand which of the above actions can better trade-off between resilience and greenness. In this in-progress work, we propose an approach to automatically evaluate CAIS recovery actions for their ability to trade-off between the resilience and greenness of the system. We have also designed an experiment protocol and its application to a real CAIS demonstrator. Our approach aims to attack the problem from two perspectives: as a one-agent decision problem through optimization, which takes the decision based on the score of resilience and greenness, and as a two-agent decision problem through game theory, which takes the decision based on the payoff computed for resilience and greenness as two players of a cooperative game.

相關內容

Large Language Models (LLMs) have revolutionized various domains with extensive knowledge and creative capabilities. However, a critical issue with LLMs is their tendency to produce outputs that diverge from factual reality. This phenomenon is particularly concerning in sensitive applications such as medical consultation and legal advice, where accuracy is paramount. In this paper, we introduce the LLM factoscope, a novel Siamese network-based model that leverages the inner states of LLMs for factual detection. Our investigation reveals distinguishable patterns in LLMs' inner states when generating factual versus non-factual content. We demonstrate the LLM factoscope's effectiveness across various architectures, achieving over 96% accuracy in factual detection. Our work opens a new avenue for utilizing LLMs' inner states for factual detection and encourages further exploration into LLMs' inner workings for enhanced reliability and transparency.

CoT (Chain-of-Thought) is a way to solve reasoning problems for LLMs . Recently, many researches appear for improving the CoT capability of LLMs. In this work, we also proposed Olapa-MCoT, which is a LLMs based on llama2-13B PLM for finetuning and alignment learning. During the alignment training, we proposed the SimRRHF algorithm and Incorrect Data Relearning and mainly focused on optimizing the Chinese mathematical reasoning ability of Olapa-MCoT. The experiment achieved significant results, with the accuracy of Chinese mathematical reasoning up to 50%, 36% rise compared to llama2-13B. In addition, the accuracy of English reasoning ability also increased by nearly 4%.

This note and agenda serve as a cause for thought for scholars interested in researching Decentralized Autonomous Organizations (DAOs), addressing both the opportunities and challenges posed by this phenomenon. It covers key aspects of data retrieval, data selection criteria, issues in data reliability and validity such as governance token pricing complexities, discrepancy in treasuries, Mainnet and Testnet data, understanding the variety of DAO types and proposal categories, airdrops affecting governance, and the Sybil problem. The agenda aims to equip scholars with the essential knowledge required to conduct nuanced and rigorous academic studies on DAOs by illuminating these various aspects and proposing directions for future research.

Temporal Sentence Grounding (TSG), which aims to localize moments from videos based on the given natural language queries, has attracted widespread attention. Existing works are mainly designed for short videos, failing to handle TSG in long videos, which poses two challenges: i) complicated contexts in long videos require temporal reasoning over longer moment sequences, and ii) multiple modalities including textual speech with rich information require special designs for content understanding in long videos. To tackle these challenges, in this work we propose a Grounding-Prompter method, which is capable of conducting TSG in long videos through prompting LLM with multimodal information. In detail, we first transform the TSG task and its multimodal inputs including speech and visual, into compressed task textualization. Furthermore, to enhance temporal reasoning under complicated contexts, a Boundary-Perceptive Prompting strategy is proposed, which contains three folds: i) we design a novel Multiscale Denoising Chain-of-Thought (CoT) to combine global and local semantics with noise filtering step by step, ii) we set up validity principles capable of constraining LLM to generate reasonable predictions following specific formats, and iii) we introduce one-shot In-Context-Learning (ICL) to boost reasoning through imitation, enhancing LLM in TSG task understanding. Experiments demonstrate the state-of-the-art performance of our Grounding-Prompter method, revealing the benefits of prompting LLM with multimodal information for TSG in long videos.

We propose StyleCap, a method to generate natural language descriptions of speaking styles appearing in speech. Although most of conventional techniques for para-/non-linguistic information recognition focus on the category classification or the intensity estimation of pre-defined labels, they cannot provide the reasoning of the recognition result in an interpretable manner. StyleCap is a first step towards an end-to-end method for generating speaking-style prompts from speech, i.e., automatic speaking-style captioning. StyleCap is trained with paired data of speech and natural language descriptions. We train neural networks that convert a speech representation vector into prefix vectors that are fed into a large language model (LLM)-based text decoder. We explore an appropriate text decoder and speech feature representation suitable for this new task. The experimental results demonstrate that our StyleCap leveraging richer LLMs for the text decoder, speech self-supervised learning (SSL) features, and sentence rephrasing augmentation improves the accuracy and diversity of generated speaking-style captions. Samples of speaking-style captions generated by our StyleCap are publicly available.

Large Language Models (LLMs) have revolutionized various domains with extensive knowledge and creative capabilities. However, a critical issue with LLMs is their tendency to produce outputs that diverge from factual reality. This phenomenon is particularly concerning in sensitive applications such as medical consultation and legal advice, where accuracy is paramount. In this paper, we introduce the LLM factoscope, a novel Siamese network-based model that leverages the inner states of LLMs for factual detection. Our investigation reveals distinguishable patterns in LLMs' inner states when generating factual versus non-factual content. We demonstrate the LLM factoscope's effectiveness across various architectures, achieving over 96% accuracy in factual detection. Our work opens a new avenue for utilizing LLMs' inner states for factual detection and encourages further exploration into LLMs' inner workings for enhanced reliability and transparency.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

The era of big data provides researchers with convenient access to copious data. However, people often have little knowledge about it. The increasing prevalence of big data is challenging the traditional methods of learning causality because they are developed for the cases with limited amount of data and solid prior causal knowledge. This survey aims to close the gap between big data and learning causality with a comprehensive and structured review of traditional and frontier methods and a discussion about some open problems of learning causality. We begin with preliminaries of learning causality. Then we categorize and revisit methods of learning causality for the typical problems and data types. After that, we discuss the connections between learning causality and machine learning. At the end, some open problems are presented to show the great potential of learning causality with data.

北京阿比特科技有限公司