亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we extend the positivity-preserving, entropy stable first-order finite volume-type scheme developed for the one-dimensional compressible Navier-Stokes equations in [1] to three spatial dimensions. The new first-order scheme is provably entropy stable, design-order accurate for smooth solutions, and guarantees the pointwise positivity of thermodynamic variables for 3-D compressible viscous flows. Similar to the 1-D counterpart, the proposed scheme for the 3-D Navier-Stokes equations is discretized on Legendre-Gauss-Lobatto grids used for high-order spectral collocation methods. The positivity of density is achieved by adding an artificial dissipation in the form of the first-order Brenner-Navier-Stokes diffusion operator. Another distinctive feature of the proposed scheme is that the Navier-Stokes viscous terms are discretized by high-order spectral collocation summation-by-parts operators. To eliminate time step stiffness caused by the high-order approximation of the viscous terms, the velocity and temperature limiters developed for the 1-D compressible Navier-Stokes equations in [1] are generalized to three spatial dimensions. These limiters bound the magnitude of velocity and temperature gradients and preserve the entropy stability and positivity properties of the baseline scheme. Numerical results are presented to demonstrate design-order accuracy and positivity-preserving properties of the new first-order scheme for 2-D and 3-D inviscid and viscous flows with strong shocks and contact discontinuities.

相關內容

This work investigates the use of sparse polynomial interpolation as a model order reduction method for the incompressible Navier-Stokes equations. Numerical results are presented underscoring the validity of sparse polynomial approximations and comparing with established reduced basis techniques. Two numerical models serve to access the accuracy of the reduced order models (ROMs), in particular parametric nonlinearities arising from curved geometries are investigated in detail. Besides the accuracy of the ROMs, other important features of the method are covered, such as offline-online splitting, run time and ease of implementation. The findings establish sparse polynomial interpolation as another instrument in the toolbox of methods for breaking the curse of dimensionality.

In this work, we design and analyze a Hybrid High-Order (HHO) discretization method for incompressible flows of non-Newtonian fluids with power-like convective behaviour. We work under general assumptions on the viscosity and convection laws, that are associated with possibly different Sobolev exponents r > 1 and s > 1. After providing a novel weak formulation of the continuous problem, we study its well-posedness highlighting how a subtle interplay between the exponents r and s determines the existence and uniqueness of a solution. We next design an HHO scheme based on this weak formulation and perform a comprehensive stability and convergence analysis, including convergence for general data and error estimates for shear-thinning fluids and small data. The HHO scheme is validated on a complete panel of model problems.

In this paper, we design and analyze a Hybrid High-Order discretization method for the steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities. The proposed method has several appealing features including the support of general meshes and high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for scalar Leray-Lions problems. A complete well-posedness and convergence analysis of the method is carried out under new, general assumptions on the strain rate-shear stress law, which encompass several common examples such as the power-law and Carreau-Yasuda models. Numerical examples complete the exposition.

The solution of time fractional partial differential equations in general exhibit a weak singularity near the initial time. In this article we propose a method for solving time fractional diffusion equation with nonlocal diffusion term. The proposed method comprises L1 scheme on graded mesh, finite element method and Newton's method. We discuss the well-posedness of the weak formulation at discrete level and derive \emph{a priori} error estimates for fully-discrete formulation in $L^2(\Omega)$ and $H^1(\Omega)$ norms. Finally, some numerical experiments are conducted to validate the theoretical findings.

This paper is concerned with the efficient spectral solutions for weakly singular nonlocal diffusion equations with Dirichlet-type volume constraints. This type of equation contains an integral operator which typically has a singularity at the midpoint of the integral domain, and the approximation of such the integral operator is one of the essential difficulties in solving the nonlocal equations. To overcome this problem, two-sided Jacobi spectral quadrature rules are proposed to develop a Jacobi spectral collocation method for the nonlocal diffusion equations. Rigorous convergence analysis of the proposed method is presented in $L^\infty$ norms, and we further prove that the Jacobi collocation solution converges to its corresponding local limit as nonlocal interactions vanish. Numerical examples are given to verify the theoretical results.

We introduce a new hybridized discontinuous Galerkin method for the incompressible magnetohydrodynamics equations. If particular velocity, pressure, magnetic field, and magnetic pressure spaces are employed for both element and trace solution fields, we arrive at an energy stable method which returns pointwise divergence-free velocity fields and magnetic fields and properly balances linear momentum. We discretize in time using a second-order-in-time generalized-$\alpha$ method, and we present a block iterative method for solving the resulting nonlinear system of equations at each time step. We numerically examine the effectiveness of our method using a manufactured solution and observe our method yields optimal convergence rates in the $L_2$ norm for the velocity field, pressure field, magnetic field, and magnetic pressure field. We further find our method is pressure robust. We then apply our method to a selection of benchmark problems and numerically confirm our method is energy stable.

For the general class of residual distribution (RD) schemes, including many finite element (such as continuous/discontinuous Galerkin) and flux reconstruction methods, an approach to construct entropy conservative/ dissipative semidiscretizations by adding suitable correction terms has been proposed by Abgrall (J.~Comp.~Phys. 372: pp. 640--666, 2018). In this work, the correction terms are characterized as solutions of certain optimization problems and are adapted to the SBP-SAT framework, focusing on discontinuous Galerkin methods. Novel generalizations to entropy inequalities, multiple constraints, and kinetic energy preservation for the Euler equations are developed and tested in numerical experiments. For all of these optimization problems, explicit solutions are provided. Additionally, the correction approach is applied for the first time to obtain a fully discrete entropy conservative/dissipative RD scheme. Here, the application of the deferred correction (DeC) method for the time integration is essential. This paper can be seen as describing a systematic method to construct structure preserving discretization, at least for the considered example.

Navier-Stokes equations are well known in modelling of an incompressible Newtonian fluid, such as air or water. This system of equations is very complex due to the non-linearity term that characterizes it. After the linearization and the discretization parts, we get a descriptor system of index-2 described by a set of differential algebraic equations (DAEs). The two main parts we develop through this paper are focused firstly on constructing an efficient algorithm based on a projection technique onto an extended block Krylov subspace, that appropriately allows us to construct a reduced system of the original DAE system. Secondly, we solve a Linear Quadratic Regulator (LQR) problem based on a Riccati feedback approach. This approach uses numerical solutions of large-scale algebraic Riccati equations. To this end, we use the extended Krylov subspace method that allows us to project the initial large matrix problem onto a low order one that is solved by some direct methods. These numerical solutions are used to obtain a feedback matrix that will be used to stabilize the original system. We conclude by providing some numerical results to confirm the performances of our proposed method compared to other known methods.

Self-adjoint operators on infinite-dimensional spaces with continuous spectra are abundant but do not possess a basis of eigenfunctions. Rather, diagonalization is achieved through spectral measures. The SpecSolve package [SIAM Rev., 63(3) (2021), pp. 489--524] computes spectral measures of general (self-adjoint) differential and integral operators by combining state-of-the-art adaptive spectral methods with an efficient resolvent-based strategy. The algorithm achieves arbitrarily high orders of convergence in terms of a smoothing parameter, allowing computation of both discrete and continuous spectral components. This article extends SpecSolve to two important classes of operators: singular integro-differential operators and general operator pencils. Essential computational steps are performed with off-the-shelf spectral methods, including spectral methods on the real line, the ultraspherical spectral method, Chebyshev and Fourier spectral methods, and the ($hp$-adaptive and sparse) ultraspherical spectral element method. This collection illustrates the power and flexibility of SpecSolve's "discretization-oblivious" paradigm.

The positive definiteness of discrete time-fractional derivatives is fundamental to the numerical stability (in the energy sense) for time-fractional phase-field models. A novel technique is proposed to estimate the minimum eigenvalue of discrete convolution kernels generated by the nonuniform L1, half-grid based L1 and time-averaged L1 formulas of the fractional Caputo's derivative. The main discrete tools are the discrete orthogonal convolution kernels and discrete complementary convolution kernels. Certain variational energy dissipation laws at discrete levels of the variable-step L1-type methods are then established for time-fractional Cahn-Hilliard model.They are shown to be asymptotically compatible, in the fractional order limit $\alpha\rightarrow1$, with the associated energy dissipation law for the classical Cahn-Hilliard equation. Numerical examples together with an adaptive time-stepping procedure are provided to demonstrate the effectiveness of the proposed methods.

北京阿比特科技有限公司