Large language models (LLMs) have exhibited a strong promise in automatically generating executable code from natural language descriptions, particularly with interactive features that allow users to engage in the code-generation process by instructing the LLM with iterative feedback. However, existing interaction paradigms often assume that users have expert knowledge to debug source code and are not optimized for non-professional programmers' use. This raises challenges in making interactive code generation more accessible for individuals with varying levels of programming expertise. To tackle these challenges, we present IntelliExplain, which offers a novel human-LLM interaction paradigm to enhance non-professional programmers' experience by enabling them to interact with source code via natural language explanations. Users interact with IntelliExplain by providing natural language corrective feedback on errors they identify from the explanations. Feedback is used by the system to revise the code, until the user is satisfied with explanations by the system of the code. Our user study demonstrates that users with IntelliExplain achieve a significantly higher success rate 11.6% and 25.3% better than with vanilla GPT-3.5, while also requiring 39.0% and 15.6% less time in Text-to-SQL and Python code generation tasks, respectively.
Large language models (LLMs) have revolutionized natural language processing and broadened their applicability across diverse commercial applications. However, the deployment of these models is constrained by high inference time in multilingual settings. To mitigate this challenge, this paper explores a training recipe of an assistant model in speculative decoding, which are leveraged to draft and-then its future tokens are verified by the target LLM. We show that language-specific draft models, optimized through a targeted pretrain-and-finetune strategy, substantially brings a speedup of inference time compared to the previous methods. We validate these models across various languages in inference time, out-of-domain speedup, and GPT-4o evaluation.
Large language models (LLMs) have recently experienced tremendous popularity and are widely used from casual conversations to AI-driven programming. However, despite their considerable success, LLMs are not entirely reliable and can give detailed guidance on how to conduct harmful or illegal activities. While safety measures can reduce the risk of such outputs, adversarial jailbreak attacks can still exploit LLMs to produce harmful content. These jailbreak templates are typically manually crafted, making large-scale testing challenging. In this paper, we introduce GPTFuzz, a novel black-box jailbreak fuzzing framework inspired by the AFL fuzzing framework. Instead of manual engineering, GPTFuzz automates the generation of jailbreak templates for red-teaming LLMs. At its core, GPTFuzz starts with human-written templates as initial seeds, then mutates them to produce new templates. We detail three key components of GPTFuzz: a seed selection strategy for balancing efficiency and variability, mutate operators for creating semantically equivalent or similar sentences, and a judgment model to assess the success of a jailbreak attack. We evaluate GPTFuzz against various commercial and open-source LLMs, including ChatGPT, LLaMa-2, and Vicuna, under diverse attack scenarios. Our results indicate that GPTFuzz consistently produces jailbreak templates with a high success rate, surpassing human-crafted templates. Remarkably, GPTFuzz achieves over 90% attack success rates against ChatGPT and Llama-2 models, even with suboptimal initial seed templates. We anticipate that GPTFuzz will be instrumental for researchers and practitioners in examining LLM robustness and will encourage further exploration into enhancing LLM safety.
Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine translation. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models' self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs.
Large language models (LLMs) have shown remarkable performance on code generation tasks. A recent application of LLMs for code generation is iterative code repair, where a model fixes an incorrect program by rationalizing about errors and generating a new program. However, code repair is primarily studied on high-resource languages like Python, and the framework's efficacy is under-explored on low-resource languages. To apply code repair for low-resource languages, we propose Distilling Low-Resource Repairs (DistiLRR), an approach that transfers the reasoning and code generation ability from a teacher model to a student model. Our results show that DistiLRR consistently outperforms baselines on low-resource languages, but has similar performance on high-resource languages. To investigate this behavior, we perform a further analysis and find that the correlation between rationale quality and code correctness is weaker than previously perceived. We hypothesize this weakness is magnified in low-resource settings where base models lack deep knowledge of a programming language, leading to wavering benefits of code repair between high-resource and low-resource languages.
Large language models (LLMs) fine-tuned for text-retrieval have demonstrated state-of-the-art results across several information retrieval (IR) benchmarks. However, supervised training for improving these models requires numerous labeled examples, which are generally unavailable or expensive to acquire. In this work, we explore the effectiveness of extending reverse engineered adaptation to the context of information retrieval (RE-AdaptIR). We use RE-AdaptIR to improve LLM-based IR models using only unlabeled data. We demonstrate improved performance both in training domains as well as zero-shot in domains where the models have seen no queries. We analyze performance changes in various fine-tuning scenarios and offer findings of immediate use to practitioners.
Large language models (LLMs) excel at a variety of natural language processing tasks, yet they struggle to generate personalized content for individuals, particularly in real-world scenarios like scientific writing. Addressing this challenge, we introduce Step-Back Profiling to personalize LLMs by distilling user history into concise profiles, including essential traits and preferences of users. Regarding our experiments, we construct a Personalized Scientific Writing (PSW) dataset to study multiuser personalization. PSW requires the models to write scientific papers given specialized author groups with diverse academic backgrounds. As for the results, we demonstrate the effectiveness of capturing user characteristics via Step-Back Profiling for collaborative writing. Moreover, our approach outperforms the baselines by up to 3.6 points on the general personalization benchmark (LaMP), including 7 personalization LLM tasks. Our extensive ablation studies validate the contributions of different components in our method and provide insights into our task definition. Our dataset and code are available at \url{//github.com/gersteinlab/step-back-profiling}.
Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator's preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM's preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.
Large language models (LLMs) demonstrate outstanding performance in various tasks in machine learning and have thus become one of the most important workloads in today's computing landscape. However, deploying LLM inference poses challenges due to the high compute and memory requirements stemming from the enormous model size and the difficulty of running it in the integer pipelines. In this paper, we present Tender, an algorithm-hardware co-design solution that enables efficient deployment of LLM inference at low precision. Based on our analysis of outlier values in LLMs, we propose a decomposed quantization technique in which the scale factors of decomposed matrices are powers of two apart. The proposed scheme allows us to avoid explicit requantization (i.e., dequantization/quantization) when accumulating the partial sums from the decomposed matrices, with a minimal extension to the commodity tensor compute hardware. Our evaluation shows that Tender achieves higher accuracy and inference performance compared to the state-of-the-art methods while also being significantly less intrusive to the existing accelerators.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.