亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a mesh-based semi-Lagrangian discretization of the time-dependent incompressible Navier-Stokes equations with free boundary conditions recast as a non-linear transport problem for a momentum 1-form. A linearly implicit fully discrete version of the scheme enjoys excellent stability properties in the vanishing viscosity limit and is applicable to inviscid incompressible Euler flows. Conservation of energy and helicity are enforced separately.

相關內容

In turbulence modeling, we are concerned with finding closure models that represent the effect of the subgrid scales on the resolved scales. Recent approaches gravitate towards machine learning techniques to construct such models. However, the stability of machine-learned closure models and their abidance by physical structure (e.g. symmetries, conservation laws) are still open problems. To tackle both issues, we take the `discretize first, filter next' approach. In this approach we apply a spatial averaging filter to existing fine-grid discretizations. The main novelty is that we introduce an additional set of equations which dynamically model the energy of the subgrid scales. Having an estimate of the energy of the subgrid scales, we can use the concept of energy conservation to derive stability. The subgrid energy containing variables are determined via a data-driven technique. The closure model is used to model the interaction between the filtered quantities and the subgrid energy. Therefore the total energy should be conserved. Abiding by this conservation law yields guaranteed stability of the system. In this work, we propose a novel skew-symmetric convolutional neural network architecture that satisfies this law. The result is that stability is guaranteed, independent of the weights and biases of the network. Importantly, as our framework allows for energy exchange between resolved and subgrid scales it can model backscatter. To model dissipative systems (e.g. viscous flows), the framework is extended with a diffusive component. The introduced neural network architecture is constructed such that it also satisfies momentum conservation. We apply the new methodology to both the viscous Burgers' equation and the Korteweg-De Vries equation in 1D. The novel architecture displays superior stability properties when compared to a vanilla convolutional neural network.

In recent research, significant attention has been devoted to the open-vocabulary object detection task, aiming to generalize beyond the limited number of classes labeled during training and detect objects described by arbitrary category names at inference. Compared with conventional object detection, open vocabulary object detection largely extends the object detection categories. However, it relies on calculating the similarity between image regions and a set of arbitrary category names with a pretrained vision-and-language model. This implies that, despite its open-set nature, the task still needs the predefined object categories during the inference stage. This raises the question: What if we do not have exact knowledge of object categories during inference? In this paper, we call such a new setting as generative open-ended object detection, which is a more general and practical problem. To address it, we formulate object detection as a generative problem and propose a simple framework named GenerateU, which can detect dense objects and generate their names in a free-form way. Particularly, we employ Deformable DETR as a region proposal generator with a language model translating visual regions to object names. To assess the free-form object detection task, we introduce an evaluation method designed to quantitatively measure the performance of generative outcomes. Extensive experiments demonstrate strong zero-shot detection performance of our GenerateU. For example, on the LVIS dataset, our GenerateU achieves comparable results to the open-vocabulary object detection method GLIP, even though the category names are not seen by GenerateU during inference. Code is available at: // github.com/FoundationVision/GenerateU .

Deep state-space models (DSSMs) have gained popularity in recent years due to their potent modeling capacity for dynamic systems. However, existing DSSM works are limited to single-task modeling, which requires retraining with historical task data upon revisiting a forepassed task. To address this limitation, we propose continual learning DSSMs (CLDSSMs), which are capable of adapting to evolving tasks without catastrophic forgetting. Our proposed CLDSSMs integrate mainstream regularization-based continual learning (CL) methods, ensuring efficient updates with constant computational and memory costs for modeling multiple dynamic systems. We also conduct a comprehensive cost analysis of each CL method applied to the respective CLDSSMs, and demonstrate the efficacy of CLDSSMs through experiments on real-world datasets. The results corroborate that while various competing CL methods exhibit different merits, the proposed CLDSSMs consistently outperform traditional DSSMs in terms of effectively addressing catastrophic forgetting, enabling swift and accurate parameter transfer to new tasks.

This paper presents a theoretical analysis of linear interpolation as a principled method for stabilizing (large-scale) neural network training. We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear interpolation can help by leveraging the theory of nonexpansive operators. We construct a new optimization scheme called relaxed approximate proximal point (RAPP), which is the first explicit method without anchoring to achieve last iterate convergence rates for $\rho$-comonotone problems while only requiring $\rho > -\tfrac{1}{2L}$. The construction extends to constrained and regularized settings. By replacing the inner optimizer in RAPP we rediscover the family of Lookahead algorithms for which we establish convergence in cohypomonotone problems even when the base optimizer is taken to be gradient descent ascent. The range of cohypomonotone problems in which Lookahead converges is further expanded by exploiting that Lookahead inherits the properties of the base optimizer. We corroborate the results with experiments on generative adversarial networks which demonstrates the benefits of the linear interpolation present in both RAPP and Lookahead.

We consider the quasi-likelihood analysis for a linear regression model driven by a Student-t L\'{e}vy process with constant scale and arbitrary degrees of freedom. The model is observed at high frequency over an extending period, under which we can quantify how the sampling frequency affects estimation accuracy. In that setting, joint estimation of trend, scale, and degrees of freedom is a non-trivial problem. The bottleneck is that the Student-t distribution is not closed under convolution, making it difficult to estimate all the parameters fully based on the high-frequency time scale. To efficiently deal with the intricate nature from both theoretical and computational points of view, we propose a two-step quasi-likelihood analysis: first, we make use of the Cauchy quasi-likelihood for estimating the regression-coefficient vector and the scale parameter; then, we construct the sequence of the unit-period cumulative residuals to estimate the remaining degrees of freedom. In particular, using full data in the first step causes a problem stemming from the small-time Cauchy approximation, showing the need for data thinning.

The Gromov-Wasserstein (GW) transport problem is a relaxation of classic optimal transport, which seeks a transport between two measures while preserving their internal geometry. Due to meeting this theoretical underpinning, it is a valuable tool for the analysis of objects that do not possess a natural embedding or should be studied independently of it. Prime applications can thus be found in e.g. shape matching, classification and interpolation tasks. To tackle the latter, one theoretically justified approach is the employment of multi-marginal GW transport and GW barycenters, which are Fr\'echet means with respect to the GW distance. However, because the computation of GW itself already poses a quadratic and non-convex optimization problem, the determination of GW barycenters is a hard task and algorithms for their computation are scarce. In this paper, we revisit a known procedure for the determination of Fr\'echet means in Riemannian manifolds via tangential approximations in the context of GW. We provide a characterization of barycenters in the GW tangent space, which ultimately gives rise to a fixpoint iteration for approximating GW barycenters using multi-marginal plans. We propose a relaxation of this fixpoint iteration and show that it monotonously decreases the barycenter loss. In certain cases our proposed method naturally provides us with barycentric embeddings. The resulting algorithm is capable of producing qualitative shape interpolations between multiple 3d shapes with support sizes of over thousands of points in reasonable time. In addition, we verify our method on shape classification and multi-graph matching tasks.

This study proposes a multi-task pseudo-label learning (MPL)-based non-intrusive speech quality assessment model called MTQ-Net. MPL consists of two stages: obtaining pseudo-label scores from a pretrained model and performing multi-task learning. The 3QUEST metrics, namely Speech-MOS (S-MOS), Noise-MOS (N-MOS), and General-MOS (G-MOS), are the assessment targets. The pretrained MOSA-Net model is utilized to estimate three pseudo labels: perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), and speech distortion index (SDI). Multi-task learning is then employed to train MTQ-Net by combining a supervised loss (derived from the difference between the estimated score and the ground-truth label) and a semi-supervised loss (derived from the difference between the estimated score and the pseudo label), where the Huber loss is employed as the loss function. Experimental results first demonstrate the advantages of MPL compared to training a model from scratch and using a direct knowledge transfer mechanism. Second, the benefit of the Huber loss for improving the predictive ability of MTQ-Net is verified. Finally, the MTQ-Net with the MPL approach exhibits higher overall predictive power compared to other SSL-based speech assessment models.

Planning a public transit network is a challenging optimization problem, but essential in order to realize the benefits of autonomous buses. We propose a novel algorithm for planning networks of routes for autonomous buses. We first train a graph neural net model as a policy for constructing route networks, and then use the policy as one of several mutation operators in a evolutionary algorithm. We evaluate this algorithm on a standard set of benchmarks for transit network design, and find that it outperforms the learned policy alone by up to 20\% and a plain evolutionary algorithm approach by up to 53\% on realistic benchmark instances.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司