亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI's impact has traditionally been assessed in terms of occupations. However, an occupation is comprised of interconnected tasks, and it is these tasks, not occupations themselves, that are affected by AI. To evaluate how tasks may be impacted, previous approaches utilized manual annotations or coarse-grained matching. Leveraging recent advancements in machine learning, we replace coarse-grained matching with more precise deep learning approaches. Introducing the AI Impact (AII) measure, we employ Deep Learning Natural Language Processing to automatically identify AI patents that impact various occupational tasks at scale. Our methodology relies on a comprehensive dataset of 19,498 task descriptions and quantifies AI's impact through analysis of 12,984 AI patents filed with the United States Patent and Trademark Office (USPTO) between 2015 and 2020. Our observations reveal that the impact of AI on occupations defies simplistic categorizations based on task complexity, challenging the conventional belief that the dichotomy between basic and advanced skills alone explains the effects of AI. Instead, the impact is intricately linked to specific skills, whether basic or advanced, associated with particular tasks. For instance, while basic skills like scanning items may be affected, others like cooking may not. Similarly, certain advanced skills, such as image analysis in radiology, may face impact, while skills involving interpersonal relationships may remain unaffected. Furthermore, the influence of AI extends beyond knowledge-centric regions. Regions in the U.S. that heavily rely on industries susceptible to AI changes, often characterized by economic inequality or a lack of economic diversification, will experience notable AI impact.

相關內容

 Beginner's All-purpose Symbolic Instruction Code(初學者通用的符號指令代碼),剛開始被作者寫做 BASIC,后來被微軟廣泛地叫做 Basic 。

The efficacy of self-supervised speech models has been validated, yet the optimal utilization of their representations remains challenging across diverse tasks. In this study, we delve into Acoustic Word Embeddings (AWEs), a fixed-length feature derived from continuous representations, to explore their advantages in specific tasks. AWEs have previously shown utility in capturing acoustic discriminability. In light of this, we propose measuring layer-wise similarity between AWEs and word embeddings, aiming to further investigate the inherent context within AWEs. Moreover, we evaluate the contribution of AWEs, in comparison to other types of speech features, in the context of Speech Emotion Recognition (SER). Through a comparative experiment and a layer-wise accuracy analysis on two distinct corpora, IEMOCAP and ESD, we explore differences between AWEs and raw self-supervised representations, as well as the proper utilization of AWEs alone and in combination with word embeddings. Our findings underscore the acoustic context conveyed by AWEs and showcase the highly competitive SER accuracies by appropriately employing AWEs.

Whenever inspected by humans, reconstructed signals should not be distinguished from real ones. Typically, such a high perceptual quality comes at the price of high reconstruction error, and vice versa. We study this distortion-perception (DP) tradeoff over finite-alphabet channels, for the Wasserstein-$1$ distance induced by a general metric as the perception index, and an arbitrary distortion matrix. Under this setting, we show that computing the DP function and the optimal reconstructions is equivalent to solving a set of linear programming problems. We provide a structural characterization of the DP tradeoff, where the DP function is piecewise linear in the perception index. We further derive a closed-form expression for the case of binary sources.

The collaboration of the real world and the virtual world, known as Digital Twin, has become a trend with numerous successful use cases. However, there are challenges mentioned in the literature that must be addressed. One of the most important issues is the difficulty of collaboration of Digital Twins due to the lack of standardization in their implementation. This article continues a previous work that proposed a generic architecture based on the FIWARE components to build Digital Twins in any field. Our work proposes the use of Linked Open Data as a mechanism to facilitate the communication of Digital Twins. We validate our proposal with a use case of an urban Digital Twin that collaborates with a parking Digital Twin. We conclude that Linked Open Data in combination with the FIWARE ecosystem is a real reference option to deploy Digital Twins and to enable the collaboration between Digital Twins.

In the Big Data era, with the ubiquity of geolocation sensors in particular, massive datasets exhibiting a possibly complex spatial dependence structure are becoming increasingly available. In this context, the standard probabilistic theory of statistical learning does not apply directly and guarantees of the generalization capacity of predictive rules learned from such data are left to establish. We analyze here the simple Kriging task from a statistical learning perspective, i.e. by carrying out a nonparametric finite-sample predictive analysis. Given $d\geq 1$ values taken by a realization of a square integrable random field $X=\{X_s\}_{s\in S}$, $S\subset \mathbb{R}^2$, with unknown covariance structure, at sites $s_1,\; \ldots,\; s_d$ in $S$, the goal is to predict the unknown values it takes at any other location $s\in S$ with minimum quadratic risk. The prediction rule being derived from a training spatial dataset: a single realization $X'$ of $X$, independent from those to be predicted, observed at $n\geq 1$ locations $\sigma_1,\; \ldots,\; \sigma_n$ in $S$. Despite the connection of this minimization problem with kernel ridge regression, establishing the generalization capacity of empirical risk minimizers is far from straightforward, due to the non independent and identically distributed nature of the training data $X'_{\sigma_1},\; \ldots,\; X'_{\sigma_n}$ involved in the learning procedure. In this article, non-asymptotic bounds of order $O_{\mathbb{P}}(1/\sqrt{n})$ are proved for the excess risk of a plug-in predictive rule mimicking the true minimizer in the case of isotropic stationary Gaussian processes, observed at locations forming a regular grid in the learning stage. These theoretical results are illustrated by various numerical experiments, on simulated data and on real-world datasets.

Combining the strengths of many existing predictors to obtain a Mixture of Experts which is superior to its individual components is an effective way to improve the performance without having to develop new architectures or train a model from scratch. However, surprisingly, we find that na\"ively combining expert object detectors in a similar way to Deep Ensembles, can often lead to degraded performance. We identify that the primary cause of this issue is that the predictions of the experts do not match their performance, a term referred to as miscalibration. Consequently, the most confident detector dominates the final predictions, preventing the mixture from leveraging all the predictions from the experts appropriately. To address this, when constructing the Mixture of Experts, we propose to combine their predictions in a manner which reflects the individual performance of the experts; an objective we achieve by first calibrating the predictions before filtering and refining them. We term this approach the Mixture of Calibrated Experts and demonstrate its effectiveness through extensive experiments on 5 different detection tasks using a variety of detectors, showing that it: (i) improves object detectors on COCO and instance segmentation methods on LVIS by up to $\sim 2.5$ AP; (ii) reaches state-of-the-art on COCO test-dev with $65.1$ AP and on DOTA with $82.62$ $\mathrm{AP_{50}}$; (iii) outperforms single models consistently on recent detection tasks such as Open Vocabulary Object Detection.

The increased utilization of Artificial Intelligence (AI) solutions brings with it inherent risks, such as misclassification and sub-optimal execution time performance, due to errors introduced in their deployment infrastructure because of problematic configuration and software faults. On top of that, AI methods such as Deep Neural Networks (DNNs) are utilized to perform demanding, resource-intensive and even safety-critical tasks, and in order to effectively increase the performance of the DNN models deployed, a variety of Machine Learning (ML) compilers have been developed, allowing compatibility of DNNs with a variety of hardware acceleration devices, such as GPUs and TPUs. Furthermore the correctness of the compilation process should be verified. In order to allow developers and researchers to explore the robustness of DNN models deployed on different hardware accelerators via ML compilers, in this paper we propose MutateNN, a tool that provides mutation testing and model analysis features in the context of deployment on different hardware accelerators. To demonstrate the capabilities of MutateNN, we focus on the image recognition domain by applying mutation testing to 7 well-established models utilized for image classification. We instruct 21 mutations of 6 different categories, and deploy our mutants on 4 different hardware acceleration devices of varying capabilities. Our results indicate that models are proven robust to changes related to layer modifications and arithmetic operators, while presenting discrepancies of up to 90.3% in mutants related to conditional operators. We also observed unexpectedly severe performance degradation on mutations related to arithmetic types of variables, leading the mutants to produce the same classifications for all dataset inputs.

Temporal characteristics are prominently evident in a substantial volume of knowledge, which underscores the pivotal role of Temporal Knowledge Graphs (TKGs) in both academia and industry. However, TKGs often suffer from incompleteness for three main reasons: the continuous emergence of new knowledge, the weakness of the algorithm for extracting structured information from unstructured data, and the lack of information in the source dataset. Thus, the task of Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention, aiming to predict missing items based on the available information. In this paper, we provide a comprehensive review of TKGC methods and their details. Specifically, this paper mainly consists of three components, namely, 1)Background, which covers the preliminaries of TKGC methods, loss functions required for training, as well as the dataset and evaluation protocol; 2)Interpolation, that estimates and predicts the missing elements or set of elements through the relevant available information. It further categorizes related TKGC methods based on how to process temporal information; 3)Extrapolation, which typically focuses on continuous TKGs and predicts future events, and then classifies all extrapolation methods based on the algorithms they utilize. We further pinpoint the challenges and discuss future research directions of TKGC.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

北京阿比特科技有限公司