Recently large-scale language-image models (e.g., text-guided diffusion models) have considerably improved the image generation capabilities to generate photorealistic images in various domains. Based on this success, current image editing methods use texts to achieve intuitive and versatile modification of images. To edit a real image using diffusion models, one must first invert the image to a noisy latent from which an edited image is sampled with a target text prompt. However, most methods lack one of the following: user-friendliness (e.g., additional masks or precise descriptions of the input image are required), generalization to larger domains, or high fidelity to the input image. In this paper, we design an accurate and quick inversion technique, Prompt Tuning Inversion, for text-driven image editing. Specifically, our proposed editing method consists of a reconstruction stage and an editing stage. In the first stage, we encode the information of the input image into a learnable conditional embedding via Prompt Tuning Inversion. In the second stage, we apply classifier-free guidance to sample the edited image, where the conditional embedding is calculated by linearly interpolating between the target embedding and the optimized one obtained in the first stage. This technique ensures a superior trade-off between editability and high fidelity to the input image of our method. For example, we can change the color of a specific object while preserving its original shape and background under the guidance of only a target text prompt. Extensive experiments on ImageNet demonstrate the superior editing performance of our method compared to the state-of-the-art baselines.
Foley sound generation aims to synthesise the background sound for multimedia content. Previous models usually employ a large development set with labels as input (e.g., single numbers or one-hot vector). In this work, we propose a diffusion model based system for Foley sound generation with text conditions. To alleviate the data scarcity issue, our model is initially pre-trained with large-scale datasets and fine-tuned to this task via transfer learning using the contrastive language-audio pertaining (CLAP) technique. We have observed that the feature embedding extracted by the text encoder can significantly affect the performance of the generation model. Hence, we introduce a trainable layer after the encoder to improve the text embedding produced by the encoder. In addition, we further refine the generated waveform by generating multiple candidate audio clips simultaneously and selecting the best one, which is determined in terms of the similarity score between the embedding of the candidate clips and the embedding of the target text label. Using the proposed method, our system ranks ${1}^{st}$ among the systems submitted to DCASE Challenge 2023 Task 7. The results of the ablation studies illustrate that the proposed techniques significantly improve sound generation performance. The codes for implementing the proposed system are available online.
Recent advancements in large-scale text-to-image diffusion models have enabled many applications in image editing. However, none of these methods have been able to edit the layout of single existing images. To address this gap, we propose the first framework for layout editing of a single image while preserving its visual properties, thus allowing for continuous editing on a single image. Our approach is achieved through two key modules. First, to preserve the characteristics of multiple objects within an image, we disentangle the concepts of different objects and embed them into separate textual tokens using a novel method called masked textual inversion. Next, we propose a training-free optimization method to perform layout control for a pre-trained diffusion model, which allows us to regenerate images with learned concepts and align them with user-specified layouts. As the first framework to edit the layout of existing images, we demonstrate that our method is effective and outperforms other baselines that were modified to support this task. Our code will be freely available for public use upon acceptance.
Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations. However, due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI. To address this challenge, we propose a new paradigm for FWI regularized by generative diffusion models. Specifically, we pre-train a diffusion model in a fully unsupervised manner on a prior velocity model distribution that represents our expectations of the subsurface and then adapt it to the seismic observations by incorporating the FWI into the sampling process of the generative diffusion models. What makes diffusion models uniquely appropriate for such an implementation is that the generative process retains the form and dimensions of the velocity model. Numerical examples demonstrate that our method can outperform the conventional FWI with only negligible additional computational cost. Even in cases of very sparse observations or observations with strong noise, the proposed method could still reconstruct a high-quality subsurface model. Thus, we can incorporate our prior expectations of the solutions in an efficient manner. We further test this approach on field data, which demonstrates the effectiveness of the proposed method.
Subject-driven text-to-image generation models create novel renditions of an input subject based on text prompts. Existing models suffer from lengthy fine-tuning and difficulties preserving the subject fidelity. To overcome these limitations, we introduce BLIP-Diffusion, a new subject-driven image generation model that supports multimodal control which consumes inputs of subject images and text prompts. Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation. We first pre-train the multimodal encoder following BLIP-2 to produce visual representation aligned with the text. Then we design a subject representation learning task which enables a diffusion model to leverage such visual representation and generates new subject renditions. Compared with previous methods such as DreamBooth, our model enables zero-shot subject-driven generation, and efficient fine-tuning for customized subject with up to 20x speedup. We also demonstrate that BLIP-Diffusion can be flexibly combined with existing techniques such as ControlNet and prompt-to-prompt to enable novel subject-driven generation and editing applications. Code and models will be released at //github.com/salesforce/LAVIS/tree/main/projects/blip-diffusion. Project page at //dxli94.github.io/BLIP-Diffusion-website/.
The existing contrastive learning methods widely adopt one-hot instance discrimination as pretext task for self-supervised learning, which inevitably neglects rich inter-instance similarities among natural images, then leading to potential representation degeneration. In this paper, we propose a novel image mix method, PatchMix, for contrastive learning in Vision Transformer (ViT), to model inter-instance similarities among images. Following the nature of ViT, we randomly mix multiple images from mini-batch in patch level to construct mixed image patch sequences for ViT. Compared to the existing sample mix methods, our PatchMix can flexibly and efficiently mix more than two images and simulate more complicated similarity relations among natural images. In this manner, our contrastive framework can significantly reduce the gap between contrastive objective and ground truth in reality. Experimental results demonstrate that our proposed method significantly outperforms the previous state-of-the-art on both ImageNet-1K and CIFAR datasets, e.g., 3.0% linear accuracy improvement on ImageNet-1K and 8.7% kNN accuracy improvement on CIFAR100. Moreover, our method achieves the leading transfer performance on downstream tasks, object detection and instance segmentation on COCO dataset. The code is available at //github.com/visresearch/patchmix.
Recently, text-to-image diffusion models have shown remarkable capabilities in creating realistic images from natural language prompts. However, few works have explored using these models for semantic localization or grounding. In this work, we explore how an off-the-shelf text-to-image diffusion model, trained without exposure to localization information, can ground various semantic phrases without segmentation-specific re-training. We introduce an inference time optimization process capable of generating segmentation masks conditioned on natural language prompts. Our proposal, Peekaboo, is a first-of-its-kind zero-shot, open-vocabulary, unsupervised semantic grounding technique leveraging diffusion models without any training. We evaluate Peekaboo on the Pascal VOC dataset for unsupervised semantic segmentation and the RefCOCO dataset for referring segmentation, showing results competitive with promising results. We also demonstrate how Peekaboo can be used to generate images with transparency, even though the underlying diffusion model was only trained on RGB images - which to our knowledge we are the first to attempt. Please see our project page, including our code: //ryanndagreat.github.io/peekaboo
In this work, we developed a novel text-guided image synthesis technique which could generate realistic tau PET images from textual descriptions and the subject's MR image. The generated tau PET images have the potential to be used in examining relations between different measures and also increasing the public availability of tau PET datasets. The method was based on latent diffusion models. Both textual descriptions and the subject's MR prior image were utilized as conditions during image generation. The subject's MR image can provide anatomical details, while the text descriptions, such as gender, scan time, cognitive test scores, and amyloid status, can provide further guidance regarding where the tau neurofibrillary tangles might be deposited. Preliminary experimental results based on clinical [18F]MK-6240 datasets demonstrate the feasibility of the proposed method in generating realistic tau PET images at different clinical stages.
Text-guided image generation has witnessed unprecedented progress due to the development of diffusion models. Beyond text and image, sound is a vital element within the sphere of human perception, offering vivid representations and naturally coinciding with corresponding scenes. Taking advantage of sound therefore presents a promising avenue for exploration within image generation research. However, the relationship between audio and image supervision remains significantly underdeveloped, and the scarcity of related, high-quality datasets brings further obstacles. In this paper, we propose a unified framework 'Align, Adapt, and Inject' (AAI) for sound-guided image generation, editing, and stylization. In particular, our method adapts input sound into a sound token, like an ordinary word, which can plug and play with existing powerful diffusion-based Text-to-Image (T2I) models. Specifically, we first train a multi-modal encoder to align audio representation with the pre-trained textual manifold and visual manifold, respectively. Then, we propose the audio adapter to adapt audio representation into an audio token enriched with specific semantics, which can be injected into a frozen T2I model flexibly. In this way, we are able to extract the dynamic information of varied sounds, while utilizing the formidable capability of existing T2I models to facilitate sound-guided image generation, editing, and stylization in a convenient and cost-effective manner. The experiment results confirm that our proposed AAI outperforms other text and sound-guided state-of-the-art methods. And our aligned multi-modal encoder is also competitive with other approaches in the audio-visual retrieval and audio-text retrieval tasks.
Arbitrary Style Transfer (AST) aims to transform images by adopting the style from any selected artwork. Nonetheless, the need to accommodate diverse and subjective user preferences poses a significant challenge. While some users wish to preserve distinct content structures, others might favor a more pronounced stylization. Despite advances in feed-forward AST methods, their limited customizability hinders their practical application. We propose a new approach, ArtFusion, which provides a flexible balance between content and style. In contrast to traditional methods reliant on biased similarity losses, ArtFusion utilizes our innovative Dual Conditional Latent Diffusion Probabilistic Models (Dual-cLDM). This approach mitigates repetitive patterns and enhances subtle artistic aspects like brush strokes and genre-specific features. Despite the promising results of conditional diffusion probabilistic models (cDM) in various generative tasks, their introduction to style transfer is challenging due to the requirement for paired training data. ArtFusion successfully navigates this issue, offering more practical and controllable stylization. A key element of our approach involves using a single image for both content and style during model training, all the while maintaining effective stylization during inference. ArtFusion outperforms existing approaches on outstanding controllability and faithful presentation of artistic details, providing evidence of its superior style transfer capabilities. Furthermore, the Dual-cLDM utilized in ArtFusion carries the potential for a variety of complex multi-condition generative tasks, thus greatly broadening the impact of our research.
Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}