亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most deep noise suppression (DNS) models are trained with reference-based losses requiring access to clean speech. However, sometimes an additive microphone model is insufficient for real-world applications. Accordingly, ways to use real training data in supervised learning for DNS models promise to reduce a potential training/inference mismatch. Employing real data for DNS training requires either generative approaches or a reference-free loss without access to the corresponding clean speech. In this work, we propose to employ an end-to-end non-intrusive deep neural network (DNN), named PESQ-DNN, to estimate perceptual evaluation of speech quality (PESQ) scores of enhanced real data. It provides a reference-free perceptual loss for employing real data during DNS training, maximizing the PESQ scores. Furthermore, we use an epoch-wise alternating training protocol, updating the DNS model on real data, followed by PESQ-DNN updating on synthetic data. The DNS model trained with the PESQ-DNN employing real data outperforms all reference methods employing only synthetic training data. On synthetic test data, our proposed method excels the Interspeech 2021 DNS Challenge baseline by a significant 0.32 PESQ points. Both on synthetic and real test data, the proposed method beats the baseline by 0.05 DNSMOS points - although PESQ-DNN optimizes for a different perceptual metric.

相關內容

域名系統(英文: Domain  Name  System, DNS)是因特網的一項核心服務,它作為可以將域名和IP地址相互映射的一個分布式數據庫,能夠使人更方便的訪問互聯網,而不用去記住能夠被機器直接讀取的IP數串。

Imitation Learning (IL) is a powerful technique for intuitive robotic programming. However, ensuring the reliability of learned behaviors remains a challenge. In the context of reaching motions, a robot should consistently reach its goal, regardless of its initial conditions. To meet this requirement, IL methods often employ specialized function approximators that guarantee this property by construction. Although effective, these approaches come with a set of limitations: 1) they are unable to fully exploit the capabilities of modern Deep Neural Network (DNN) architectures, 2) some are restricted in the family of motions they can model, resulting in suboptimal IL capabilities, and 3) they require explicit extensions to account for the geometry of motions that consider orientations. To address these challenges, we introduce a novel stability loss function, drawing inspiration from the triplet loss used in the deep metric learning literature. This loss does not constrain the DNN's architecture and enables learning policies that yield accurate results. Furthermore, it is easily adaptable to the geometry of the robot's state space. We provide a proof of the stability properties induced by this loss and empirically validate our method in various settings. These settings include Euclidean and non-Euclidean state spaces, as well as first-order and second-order motions, both in simulation and with real robots. More details about the experimental results can be found at: //youtu.be/ZWKLGntCI6w.

In the wake of Masked Image Modeling (MIM), a diverse range of plain, non-hierarchical Vision Transformer (ViT) models have been pre-trained with extensive datasets, offering new paradigms and significant potential for semantic segmentation. Current state-of-the-art systems incorporate numerous inductive biases and employ cumbersome decoders. Building upon the original motivations of plain ViTs, which are simplicity and generality, we explore high-performance `minimalist' systems to this end. Our primary purpose is to provide simple and efficient baselines for practical semantic segmentation with plain ViTs. Specifically, we first explore the feasibility and methodology for achieving high-performance semantic segmentation using the last feature map. As a result, we introduce the PlainSeg, a model comprising only three 3$\times$3 convolutions in addition to the transformer layers (either encoder or decoder). In this process, we offer insights into two underlying principles: (i) high-resolution features are crucial to high performance in spite of employing simple up-sampling techniques and (ii) the slim transformer decoder requires a much larger learning rate than the wide transformer decoder. On this basis, we further present the PlainSeg-Hier, which allows for the utilization of hierarchical features. Extensive experiments on four popular benchmarks demonstrate the high performance and efficiency of our methods. They can also serve as powerful tools for assessing the transfer ability of base models in semantic segmentation. Code is available at \url{//github.com/ydhongHIT/PlainSeg}.

Making models algorithmically fairer in tabular data has been long studied, with techniques typically oriented towards fixes which usually take a neural model with an undesirable outcome and make changes to how the data are ingested, what the model weights are, or how outputs are processed. We employ an emergent and different strategy where we consider updating the model's architecture and training hyperparameters to find an entirely new model with better outcomes from the beginning of the debiasing procedure. In this work, we propose using multi-objective Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO) in the first application to the very challenging domain of tabular data. We conduct extensive exploration of architectural and hyperparameter spaces (MLP, ResNet, and FT-Transformer) across diverse datasets, demonstrating the dependence of accuracy and fairness metrics of model predictions on hyperparameter combinations. We show that models optimized solely for accuracy with NAS often fail to inherently address fairness concerns. We propose a novel approach that jointly optimizes architectural and training hyperparameters in a multi-objective constraint of both accuracy and fairness. We produce architectures that consistently Pareto dominate state-of-the-art bias mitigation methods either in fairness, accuracy or both, all of this while being Pareto-optimal over hyperparameters achieved through single-objective (accuracy) optimization runs. This research underscores the promise of automating fairness and accuracy optimization in deep learning models.

Unlike the standard Reinforcement Learning (RL) model, many real-world tasks are non-Markovian, whose rewards are predicated on state history rather than solely on the current state. Solving a non-Markovian task, frequently applied in practical applications such as autonomous driving, financial trading, and medical diagnosis, can be quite challenging. We propose a novel RL approach to achieve non-Markovian rewards expressed in temporal logic LTL$_f$ (Linear Temporal Logic over Finite Traces). To this end, an encoding of linear complexity from LTL$_f$ into MDPs (Markov Decision Processes) is introduced to take advantage of advanced RL algorithms. Then, a prioritized experience replay technique based on the automata structure (semantics equivalent to LTL$_f$ specification) is utilized to improve the training process. We empirically evaluate several benchmark problems augmented with non-Markovian tasks to demonstrate the feasibility and effectiveness of our approach.

Language models (LMs) have been commonly adopted to boost the performance of automatic speech recognition (ASR) particularly in domain adaptation tasks. Conventional way of LM training treats all the words in corpora equally, resulting in suboptimal improvements in ASR performance. In this work, we introduce a novel correction focused LM training approach which aims to prioritize ASR fallible words. The word-level ASR fallibility score, representing the likelihood of ASR mis-recognition, is defined and shaped as a prior word distribution to guide the LM training. To enable correction focused training with text-only corpora, large language models (LLMs) are employed as fallibility score predictors and text generators through multi-task fine-tuning. Experimental results for domain adaptation tasks demonstrate the effectiveness of our proposed method. Compared with conventional LMs, correction focused training achieves up to relatively 5.5% word error rate (WER) reduction in sufficient text scenarios. In insufficient text scenarios, LM training with LLM-generated text achieves up to relatively 13% WER reduction, while correction focused training further obtains up to relatively 6% WER reduction.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

In recent years, larger and deeper models are springing up and continuously pushing state-of-the-art (SOTA) results across various fields like natural language processing (NLP) and computer vision (CV). However, despite promising results, it needs to be noted that the computations required by SOTA models have been increased at an exponential rate. Massive computations not only have a surprisingly large carbon footprint but also have negative effects on research inclusiveness and deployment on real-world applications. Green deep learning is an increasingly hot research field that appeals to researchers to pay attention to energy usage and carbon emission during model training and inference. The target is to yield novel results with lightweight and efficient technologies. Many technologies can be used to achieve this goal, like model compression and knowledge distillation. This paper focuses on presenting a systematic review of the development of Green deep learning technologies. We classify these approaches into four categories: (1) compact networks, (2) energy-efficient training strategies, (3) energy-efficient inference approaches, and (4) efficient data usage. For each category, we discuss the progress that has been achieved and the unresolved challenges.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

北京阿比特科技有限公司