In real-world tasks, there is usually a large amount of unlabeled data and labeled data. The task of combining the two to learn is known as semi-supervised learning. Experts can use logical rules to label unlabeled data, but this operation is costly. The combination of perception and reasoning has a good effect in processing such semi-supervised tasks with domain knowledge. However, acquiring domain knowledge and the correction, reduction and generation of rules remain complex problems to be solved. Rough set theory is an important method for solving knowledge processing in information systems. In this paper, we propose a rule general abductive learning by rough set (RS-ABL). By transforming the target concept and sub-concepts of rules into information tables, rough set theory is used to solve the acquisition of domain knowledge and the correction, reduction and generation of rules at a lower cost. This framework can also generate more extensive negative rules to enhance the breadth of the knowledge base. Compared with the traditional semi-supervised learning method, RS-ABL has higher accuracy in dealing with semi-supervised tasks.
In Koopman operator theory, a finite-dimensional nonlinear system is transformed into an infinite but linear system using a set of observable functions. However, manually selecting observable functions that span the invariant subspace of the Koopman operator based on prior knowledge is inefficient and challenging, particularly when little or no information is available about the underlying systems. Furthermore, current methodologies tend to disregard the importance of the invertibility of observable functions, which leads to inaccurate results. To address these challenges, we propose the so-called FlowDMD, aka Flow-based Dynamic Mode Decomposition, that utilizes the Coupling Flow Invertible Neural Network (CF-INN) framework. FlowDMD leverages the intrinsically invertible characteristics of the CF-INN to learn the invariant subspaces of the Koopman operator and accurately reconstruct state variables. Numerical experiments demonstrate the superior performance of our algorithm compared to state-of-the-art methodologies.
Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.
Many testing problems are readily amenable to randomised tests such as those employing data splitting. However despite their usefulness in principle, randomised tests have obvious drawbacks. Firstly, two analyses of the same dataset may lead to different results. Secondly, the test typically loses power because it does not fully utilise the entire sample. As a remedy to these drawbacks, we study how to combine the test statistics or p-values resulting from multiple random realisations such as through random data splits. We develop rank-transformed subsampling as a general method for delivering large sample inference about the combined statistic or p-value under mild assumptions. We apply our methodology to a wide range of problems, including testing unimodality in high-dimensional data, testing goodness-of-fit of parametric quantile regression models, testing no direct effect in a sequentially randomised trial and calibrating cross-fit double machine learning confidence intervals. In contrast to existing p-value aggregation schemes that can be highly conservative, our method enjoys type-I error control that asymptotically approaches the nominal level. Moreover, compared to using the ordinary subsampling, we show that our rank transform can remove the first-order bias in approximating the null under alternatives and greatly improve power.
Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion; based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they have proven equivalent. From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability (namely, bounds on the Vapnik Chervonekis (VC) dimension) has recently been investigated for GNNs with piecewise polynomial activation functions. The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.
We address modelling and computational issues for multiple treatment effect inference under many potential confounders. A primary issue relates to preventing harmful effects from omitting relevant covariates (under-selection), while not running into over-selection issues that introduce substantial variance and a bias related to the non-random over-inclusion of covariates. We propose a novel empirical Bayes framework for Bayesian model averaging that learns from data the extent to which the inclusion of key covariates should be encouraged, specifically those highly associated to the treatments. A key challenge is computational. We develop fast algorithms, including an Expectation-Propagation variational approximation and simple stochastic gradient optimization algorithms, to learn the hyper-parameters from data. Our framework uses widely-used ingredients and largely existing software, and it is implemented within the R package mombf featured on CRAN. This work is motivated by and is illustrated in two applications. The first is the association between salary variation and discriminatory factors. The second, that has been debated in previous works, is the association between abortion policies and crime. Our approach provides insights that differ from previous analyses especially in situations with weaker treatment effects.
Recently, a family of unconventional integrators for ODEs with polynomial vector fields was proposed, based on the polarization of vector fields. The simplest instance is the by now famous Kahan discretization for quadratic vector fields. All these integrators seem to possess remarkable conservation properties. In particular, it has been proved that, when the underlying ODE is Hamiltonian, its polarization discretization possesses an integral of motion and an invariant volume form. In this note, we propose a new algebraic approach to derivation of the integrals of motion for polarization discretizations.
Constant weight codes (CWCs) and constant composition codes (CCCs) are two important classes of codes that have been studied extensively in both combinatorics and coding theory for nearly sixty years. In this paper we show that for {\it all} fixed odd distances, there exist near-optimal CWCs and CCCs asymptotically achieving the classic Johnson-type upper bounds. Let $A_q(n,w,d)$ denote the maximum size of $q$-ary CWCs of length $n$ with constant weight $w$ and minimum distance $d$. One of our main results shows that for {\it all} fixed $q,w$ and odd $d$, one has $\lim_{n\rightarrow\infty}\frac{A_q(n,d,w)}{\binom{n}{t}}=\frac{(q-1)^t}{\binom{w}{t}}$, where $t=\frac{2w-d+1}{2}$. This implies the existence of near-optimal generalized Steiner systems originally introduced by Etzion, and can be viewed as a counterpart of a celebrated result of R\"odl on the existence of near-optimal Steiner systems. Note that prior to our work, very little is known about $A_q(n,w,d)$ for $q\ge 3$. A similar result is proved for the maximum size of CCCs. We provide different proofs for our two main results, based on two strengthenings of the well-known Frankl-R\"odl-Pippenger theorem on the existence of near-optimal matchings in hypergraphs: the first proof follows by Kahn's linear programming variation of the above theorem, and the second follows by the recent independent work of Delcour-Postle, and Glock-Joos-Kim-K\"uhn-Lichev on the existence of near-optimal matchings avoiding certain forbidden configurations. We also present several intriguing open questions for future research.
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the global climate, known to be a tipping element, as it could collapse under global warming. The main objective of this study is to compute the probability that the AMOC collapses within a specified time window, using a rare-event algorithm called Trajectory-Adaptive Multilevel Splitting (TAMS). However, the efficiency and accuracy of TAMS depend on the choice of the score function. Although the definition of the optimal score function, called ``committor function" is known, it is impossible in general to compute it a priori. Here, we combine TAMS with a Next-Generation Reservoir Computing technique that estimates the committor function from the data generated by the rare-event algorithm. We test this technique in a stochastic box model of the AMOC for which two types of transition exist, the so-called F(ast)-transitions and S(low)-transitions. Results for the F-transtions compare favorably with those in the literature where a physically-informed score function was used. We show that coupling a rare-event algorithm with machine learning allows for a correct estimation of transition probabilities, transition times, and even transition paths for a wide range of model parameters. We then extend these results to the more difficult problem of S-transitions in the same model. In both cases of F- and S-transitions, we also show how the Next-Generation Reservoir Computing technique can be interpreted to retrieve an analytical estimate of the committor function.
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.