Digital Twins play a crucial role in bridging the physical and virtual worlds. Given the dynamic and evolving characteristics of the physical world, a huge volume of data transmission and exchange is necessary to attain synchronized updates in the virtual world. In this paper, we propose a semantic communication framework based on You Only Look Once (YOLO) to construct a virtual apple orchard with the aim of mitigating the costs associated with data transmission. Specifically, we first employ the YOLOv7-X object detector to extract semantic information from captured images of edge devices, thereby reducing the volume of transmitted data and saving transmission costs. Afterwards, we quantify the importance of each semantic information by the confidence generated through the object detector. Based on this, we propose two resource allocation schemes, i.e., the confidence-based scheme and the artificial intelligence-generated scheme, aimed at enhancing the transmission quality of important semantic information. The proposed diffusion model generates an optimal allocation scheme that outperforms both the average allocation scheme and the confidence-based allocation scheme. Moreover, to obtain semantic information more effectively, we enhance the detection capability of the YOLOv7-X object detector by introducing new Efficient Layer Aggregation Network-HorNet (ELAN-H) and SimAM attention modules, while reducing the model parameters and computational complexity, making it easier to run on edge devices with limited performance. The numerical results indicate that our proposed semantic communication framework and resource allocation schemes significantly reduce transmission costs while enhancing the transmission quality of important information in communication services.
We describe the construction and evaluation of a part-of-speech tagger for Yiddish. This is the first step in a larger project of automatically assigning part-of-speech tags and syntactic structure to Yiddish text for purposes of linguistic research. We combine two resources for the current work - an 80K-word subset of the Penn Parsed Corpus of Historical Yiddish (PPCHY) and 650 million words of OCR'd Yiddish text from the Yiddish Book Center (YBC). Yiddish orthography in the YBC corpus has many spelling inconsistencies, and we present some evidence that even simple non-contextualized embeddings trained on YBC are able to capture the relationships among spelling variants without the need to first "standardize" the corpus. We also use YBC for continued pretraining of contexualized embeddings, which are then integrated into a tagger model trained and evaluated on the PPCHY. We evaluate the tagger performance on a 10-fold cross-validation split, showing that the use of the YBC text for the contextualized embeddings improves tagger performance. We conclude by discussing some next steps, including the need for additional annotated training and test data.
Deep Operator Network (DeepONet), a recently introduced deep learning operator network, approximates linear and nonlinear solution operators by taking parametric functions (infinite-dimensional objects) as inputs and mapping them to solution functions in contrast to classical neural networks that need re-training for every new set of parametric inputs. In this work, we have extended the classical formulation of DeepONets by introducing sequential learning models like the gated recurrent unit (GRU) and long short-term memory (LSTM) in the branch network to allow for accurate predictions of the solution contour plots under parametric and time-dependent loading histories. Two example problems, one on transient heat transfer and the other on path-dependent plastic loading, were shown to demonstrate the capabilities of the new architectures compared to the benchmark DeepONet model with a feed-forward neural network (FNN) in the branch. Despite being more computationally expensive, the GRU- and LSTM-DeepONets lowered the prediction error by half (0.06\% vs. 0.12\%) compared to FNN-DeepONet in the heat transfer problem, and by 2.5 times (0.85\% vs. 3\%) in the plasticity problem. In all cases, the proposed DeepONets achieved a prediction $R^2$ value of above 0.995, indicating superior accuracy. Results show that once trained, the proposed DeepONets can accurately predict the final full-field solution over the entire domain and are at least two orders of magnitude faster than direct finite element simulations, rendering it an accurate and robust surrogate model for rapid preliminary evaluations.
With the emerging diffusion models, recently, text-to-video generation has aroused increasing attention. But an important bottleneck therein is that generative videos often tend to carry some flickers and artifacts. In this work, we propose a dual-stream diffusion net (DSDN) to improve the consistency of content variations in generating videos. In particular, the designed two diffusion streams, video content and motion branches, could not only run separately in their private spaces for producing personalized video variations as well as content, but also be well-aligned between the content and motion domains through leveraging our designed cross-transformer interaction module, which would benefit the smoothness of generated videos. Besides, we also introduce motion decomposer and combiner to faciliate the operation on video motion. Qualitative and quantitative experiments demonstrate that our method could produce amazing continuous videos with fewer flickers.
Federated Learning (FL) is a distributed machine learning (ML) paradigm, in which multiple clients collaboratively train ML models without centralizing their local data. Similar to conventional ML pipelines, the client local optimization and server aggregation procedure in FL are sensitive to the hyperparameter (HP) selection. Despite extensive research on tuning HPs for centralized ML, these methods yield suboptimal results when employed in FL. This is mainly because their "training-after-tuning" framework is unsuitable for FL with limited client computation power. While some approaches have been proposed for HP-Tuning in FL, they are limited to the HPs for client local updates. In this work, we propose a novel HP-tuning algorithm, called Federated Population-based Hyperparameter Tuning (FedPop), to address this vital yet challenging problem. FedPop employs population-based evolutionary algorithms to optimize the HPs, which accommodates various HP types at both client and server sides. Compared with prior tuning methods, FedPop employs an online "tuning-while-training" framework, offering computational efficiency and enabling the exploration of a broader HP search space. Our empirical validation on the common FL benchmarks and complex real-world FL datasets demonstrates the effectiveness of the proposed method, which substantially outperforms the concurrent state-of-the-art HP tuning methods for FL.
Batched linear solvers play a vital role in computational sciences, especially in the fields of plasma physics and combustion simulations. With the imminent deployment of the Aurora Supercomputer and other upcoming systems equipped with Intel GPUs, there is a compelling demand to expand the capabilities of these solvers for Intel GPU architectures. In this paper, we present our efforts in porting and optimizing the batched iterative solvers on Intel GPUs using the SYCL programming model. The SYCL-based implementation exhibits impressive performance and scalability on the Intel GPU Max 1550s (Ponte Vecchio GPUs). The solvers outperform our previous CUDA implementation on NVIDIA H100 GPUs by an average of 2.4x for the PeleLM application inputs. The batched solvers are ready for production use in real-world scientific applications through the Ginkgo library.
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties. However, due to the selection bias of training and testing data (e.g., training on small graphs and testing on large graphs, or training on dense graphs and testing on sparse graphs), distribution deviation is widespread. More importantly, we often observe \emph{hybrid structure distribution shift} of both scale and density, despite of one-sided biased data partition. The spurious correlations over hybrid distribution deviation degrade the performance of previous GNN methods and show large instability among different datasets. To alleviate this problem, we propose \texttt{OOD-GMixup} to jointly manipulate the training distribution with \emph{controllable data augmentation} in metric space. Specifically, we first extract the graph rationales to eliminate the spurious correlations due to irrelevant information. Secondly, we generate virtual samples with perturbation on graph rationale representation domain to obtain potential OOD training samples. Finally, we propose OOD calibration to measure the distribution deviation of virtual samples by leveraging Extreme Value Theory, and further actively control the training distribution by emphasizing the impact of virtual OOD samples. Extensive studies on several real-world datasets on graph classification demonstrate the superiority of our proposed method over state-of-the-art baselines.
Vehicle-to-Everything (V2X) communications play a crucial role in ensuring safe and efficient modern transportation systems. However, challenges arise in scenarios with buildings, leading to signal obstruction and coverage limitations. To alleviate these challenges, reconfigurable intelligent surface (RIS) is regarded as an effective solution for communication performance by tuning passive signal reflection. RIS has acquired prominence in 6G networks due to its improved spectral efficiency, simple deployment, and cost-effectiveness. Nevertheless, conventional RIS solutions have coverage limitations. Therefore, researchers have started focusing on the promising concept of simultaneously transmitting and reflecting RIS (STAR-RIS), which provides 360\degree coverage while utilizing the advantages of RIS technology. In this paper, a STAR-RIS-assisted V2X communication system is investigated. An optimization problem is formulated to maximize the achievable data rate for vehicle-to-infrastructure (V2I) users while satisfying the latency and reliability requirements of vehicle-to-vehicle (V2V) pairs by jointly optimizing the spectrum allocation, amplitudes, and phase shifts of STAR-RIS elements, digital beamforming vectors for V2I links, and transmit power for V2V pairs. Since it is challenging to solve in polynomial time, we decompose our problem into two sub-problems. For the first sub-problem, we model the control variables as a Markov Decision Process (MDP) and propose a combined double deep Q-network (DDQN) with an attention mechanism so that the model can potentially focus on relevant inputs. For the latter, a standard optimization-based approach is implemented to provide a real-time solution, reducing computational costs. Extensive numerical analysis is developed to demonstrate the superiority of our proposed algorithm compared to benchmark schemes.
Large Language Models (LLMs), such as ChatGPT, are becoming increasingly sophisticated, demonstrating capabilities that closely resemble those of humans. These AI models are playing an essential role in assisting humans with a wide array of tasks in daily life. A significant application of AI is its use as a chat agent, responding to human inquiries across various domains. Current LLMs have shown proficiency in answering general questions. However, basic question-answering dialogue often falls short in complex diagnostic scenarios, such as legal or medical consultations. These scenarios typically necessitate Task-Oriented Dialogue (TOD), wherein an AI chat agent needs to proactively pose questions and guide users towards specific task completion. Previous fine-tuning models have underperformed in TOD, and current LLMs do not inherently possess this capability. In this paper, we introduce DiagGPT (Dialogue in Diagnosis GPT), an innovative method that extends LLMs to TOD scenarios. Our experiments reveal that DiagGPT exhibits outstanding performance in conducting TOD with users, demonstrating its potential for practical applications.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.