亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The detection of echolocation clicks is key in understanding the intricate behaviors of cetaceans and monitoring their populations. Cetacean species relying on clicks for navigation, foraging and even communications are sperm whales (Physeter macrocephalus) and a variety of dolphin groups. Echolocation clicks are wideband signals of short duration that are often emitted in sequences of varying inter-click-intervals. While datasets and models for clicks exist, the detection and classification of clicks present a significant challenge, mostly due to the diversity of clicks' structures, overlapping signals from simultaneously emitting animals, and the abundance of noise transients from, for example, snapping shrimps and shipping cavitation noise. This paper provides a survey of the many detection and classification methodologies of clicks, ranging from 2002 to 2023. We divide the surveyed techniques into categories by their methodology. Specifically, feature analysis (e.g., phase, ICI and duration), frequency content, energy based detection, supervised and unsupervised machine learning, template matching and adaptive detection approaches. Also surveyed are open access platforms for click detections, and databases openly available for testing. Details of the method applied for each paper are given along with advantages and limitations, and for each category we analyze the remaining challenges. The paper also includes a performance comparison for several schemes over a shared database. Finally, we provide tables summarizing the existing detection schemes in terms of challenges address, methods, detection and classification tools applied, features used and applications.

相關內容

The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.

Detecting polyps through colonoscopy is an important task in medical image segmentation, which provides significant assistance and reference value for clinical surgery. However, accurate segmentation of polyps is a challenging task due to two main reasons. Firstly, polyps exhibit various shapes and colors. Secondly, the boundaries between polyps and their normal surroundings are often unclear. Additionally, significant differences between different datasets lead to limited generalization capabilities of existing methods. To address these issues, we propose a segmentation model based on Prompt-Mamba, which incorporates the latest Vision-Mamba and prompt technologies. Compared to previous models trained on the same dataset, our model not only maintains high segmentation accuracy on the validation part of the same dataset but also demonstrates superior accuracy on unseen datasets, exhibiting excellent generalization capabilities. Notably, we are the first to apply the Vision-Mamba architecture to polyp segmentation and the first to utilize prompt technology in a polyp segmentation model. Our model efficiently accomplishes segmentation tasks, surpassing previous state-of-the-art methods by an average of 5% across six datasets. Furthermore, we have developed multiple versions of our model with scaled parameter counts, achieving better performance than previous models even with fewer parameters. Our code and trained weights will be released soon.

We investigate the extremality of stabilizer states to reveal their exceptional role in the space of all $n$-qubit/qudit states. We establish uncertainty principles for the characteristic function and the Wigner function of states, respectively. We find that only stabilizer states achieve saturation in these principles. Furthermore, we prove a general theorem that stabilizer states are extremal for convex information measures invariant under local unitaries. We explore this extremality in the context of various quantum information and correlation measures, including entanglement entropy, conditional entropy and other entanglement measures. Additionally, leveraging the recent discovery that stabilizer states are the limit states under quantum convolution, we establish the monotonicity of the entanglement entropy and conditional entropy under quantum convolution. These results highlight the remarkable information-theoretic properties of stabilizer states. Their extremality provides valuable insights into their ability to capture information content and correlations, paving the way for further exploration of their potential in quantum information processing.

Incomplete factorizations have long been popular general-purpose algebraic preconditioners for solving large sparse linear systems of equations. Guaranteeing the factorization is breakdown free while computing a high quality preconditioner is challenging. A resurgence of interest in using low precision arithmetic makes the search for robustness more urgent and tougher. In this paper, we focus on symmetric positive definite problems and explore a number of approaches: a look-ahead strategy to anticipate break down as early as possible, the use of global shifts, and a modification of an idea developed in the field of numerical optimization for the complete Cholesky factorization of dense matrices. Our numerical simulations target highly ill-conditioned sparse linear systems with the goal of computing the factors in half precision arithmetic and then achieving double precision accuracy using mixed precision refinement.

Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function. The results hold for arbitrary exchangeable scores, including adaptive ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.

We discuss the design of an invariant measure-preserving transformed dynamics for the numerical treatment of Langevin dynamics based on rescaling of time, with the goal of sampling from an invariant measure. Given an appropriate monitor function which characterizes the numerical difficulty of the problem as a function of the state of the system, this method allows the stepsizes to be reduced only when necessary, facilitating efficient recovery of long-time behavior. We study both the overdamped and underdamped Langevin dynamics. We investigate how an appropriate correction term that ensures preservation of the invariant measure should be incorporated into a numerical splitting scheme. Finally, we demonstrate the use of the technique in several model systems, including a Bayesian sampling problem with a steep prior.

The Fisher-Rao distance between two probability distributions of a statistical model is defined as the Riemannian geodesic distance induced by the Fisher information metric. In order to calculate the Fisher-Rao distance in closed-form, we need (1) to elicit a formula for the Fisher-Rao geodesics, and (2) to integrate the Fisher length element along those geodesics. We consider several numerically robust approximation and bounding techniques for the Fisher-Rao distances: First, we report generic upper bounds on Fisher-Rao distances based on closed-form 1D Fisher-Rao distances of submodels. Second, we describe several generic approximation schemes depending on whether the Fisher-Rao geodesics or pregeodesics are available in closed-form or not. In particular, we obtain a generic method to guarantee an arbitrarily small additive error on the approximation provided that Fisher-Rao pregeodesics and tight lower and upper bounds are available. Third, we consider the case of Fisher metrics being Hessian metrics, and report generic tight upper bounds on the Fisher-Rao distances using techniques of information geometry. Uniparametric and biparametric statistical models always have Fisher Hessian metrics, and in general a simple test allows to check whether the Fisher information matrix yields a Hessian metric or not. Fourth, we consider elliptical distribution families and show how to apply the above techniques to these models. We also propose two new distances based either on the Fisher-Rao lengths of curves serving as proxies of Fisher-Rao geodesics, or based on the Birkhoff/Hilbert projective cone distance. Last, we consider an alternative group-theoretic approach for statistical transformation models based on the notion of maximal invariant which yields insights on the structures of the Fisher-Rao distance formula which may be used fruitfully in applications.

The asymptotically precise estimation of the generalization of kernel methods has recently received attention due to the parallels between neural networks and their associated kernels. However, prior works derive such estimates for training by kernel ridge regression (KRR), whereas neural networks are typically trained with gradient descent (GD). In the present work, we consider the training of kernels with a family of $\textit{spectral algorithms}$ specified by profile $h(\lambda)$, and including KRR and GD as special cases. Then, we derive the generalization error as a functional of learning profile $h(\lambda)$ for two data models: high-dimensional Gaussian and low-dimensional translation-invariant model. Under power-law assumptions on the spectrum of the kernel and target, we use our framework to (i) give full loss asymptotics for both noisy and noiseless observations (ii) show that the loss localizes on certain spectral scales, giving a new perspective on the KRR saturation phenomenon (iii) conjecture, and demonstrate for the considered data models, the universality of the loss w.r.t. non-spectral details of the problem, but only in case of noisy observation.

Regression models that incorporate smooth functions of predictor variables to explain the relationships with a response variable have gained widespread usage and proved successful in various applications. By incorporating smooth functions of predictor variables, these models can capture complex relationships between the response and predictors while still allowing for interpretation of the results. In situations where the relationships between a response variable and predictors are explored, it is not uncommon to assume that these relationships adhere to certain shape constraints. Examples of such constraints include monotonicity and convexity. The scam package for R has become a popular package to carry out the full fitting of exponential family generalized additive modelling with shape restrictions on smooths. The paper aims to extend the existing framework of shape-constrained generalized additive models (SCAM) to accommodate smooth interactions of covariates, linear functionals of shape-constrained smooths and incorporation of residual autocorrelation. The methods described in this paper are implemented in the recent version of the package scam, available on the Comprehensive R Archive Network (CRAN).

Fourth-order variational inequalities are encountered in various scientific and engineering disciplines, including elliptic optimal control problems and plate obstacle problems. In this paper, we consider additive Schwarz methods for solving fourth-order variational inequalities. Based on a unified framework of various finite element methods for fourth-order variational inequalities, we develop one- and two-level additive Schwarz methods. We prove that the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. This proof relies on a new nonlinear positivity-preserving coarse interpolation operator, the construction of which was previously unknown. To the best of our knowledge, this analysis represents the first investigation into the scalability of the two-level additive Schwarz method for fourth-order variational inequalities. Our theoretical results are verified by numerical experiments.

北京阿比特科技有限公司