亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents an Exploratory 3D Dance generation framework, E3D2, designed to address the exploration capability deficiency in existing music-conditioned 3D dance generation models. Current models often generate monotonous and simplistic dance sequences that misalign with human preferences because they lack exploration capabilities. The E3D2 framework involves a reward model trained from automatically-ranked dance demonstrations, which then guides the reinforcement learning process. This approach encourages the agent to explore and generate high quality and diverse dance movement sequences. The soundness of the reward model is both theoretically and experimentally validated. Empirical experiments demonstrate the effectiveness of E3D2 on the AIST++ dataset. Project Page: //sites.google.com/view/e3d2.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · Analysis · Google Colab · 多樣性 ·
2024 年 2 月 7 日

We introduce Edu-ConvoKit, an open-source library designed to handle pre-processing, annotation and analysis of conversation data in education. Resources for analyzing education conversation data are scarce, making the research challenging to perform and therefore hard to access. We address these challenges with Edu-ConvoKit. Edu-ConvoKit is open-source (//github.com/stanfordnlp/edu-convokit ), pip-installable (//pypi.org/project/edu-convokit/ ), with comprehensive documentation (//edu-convokit.readthedocs.io/en/latest/ ). Our demo video is available at: //youtu.be/zdcI839vAko?si=h9qlnl76ucSuXb8- . We include additional resources, such as Colab applications of Edu-ConvoKit to three diverse education datasets and a repository of Edu-ConvoKit related papers, that can be found in our GitHub repository.

In this study, we present aLLM4TS, an innovative framework that adapts Large Language Models (LLMs) for time-series representation learning. Central to our approach is that we reconceive time-series forecasting as a self-supervised, multi-patch prediction task, which, compared to traditional mask-and-reconstruction methods, captures temporal dynamics in patch representations more effectively. Our strategy encompasses two-stage training: (i). a causal continual pre-training phase on various time-series datasets, anchored on next patch prediction, effectively syncing LLM capabilities with the intricacies of time-series data; (ii). fine-tuning for multi-patch prediction in the targeted time-series context. A distinctive element of our framework is the patch-wise decoding layer, which departs from previous methods reliant on sequence-level decoding. Such a design directly transposes individual patches into temporal sequences, thereby significantly bolstering the model's proficiency in mastering temporal patch-based representations. aLLM4TS demonstrates superior performance in several downstream tasks, proving its effectiveness in deriving temporal representations with enhanced transferability and marking a pivotal advancement in the adaptation of LLMs for time-series analysis.

In this paper, we prove the first Bayesian regret bounds for Thompson Sampling in reinforcement learning in a multitude of settings. We simplify the learning problem using a discrete set of surrogate environments, and present a refined analysis of the information ratio using posterior consistency. This leads to an upper bound of order $\widetilde{O}(H\sqrt{d_{l_1}T})$ in the time inhomogeneous reinforcement learning problem where $H$ is the episode length and $d_{l_1}$ is the Kolmogorov $l_1-$dimension of the space of environments. We then find concrete bounds of $d_{l_1}$ in a variety of settings, such as tabular, linear and finite mixtures, and discuss how how our results are either the first of their kind or improve the state-of-the-art.

We introduce a new framework for studying meta-learning methods using PAC-Bayesian theory. Its main advantage over previous work is that it allows for more flexibility in how the transfer of knowledge between tasks is realized. For previous approaches, this could only happen indirectly, by means of learning prior distributions over models. In contrast, the new generalization bounds that we prove express the process of meta-learning much more directly as learning the learning algorithm that should be used for future tasks. The flexibility of our framework makes it suitable to analyze a wide range of meta-learning mechanisms and even design new mechanisms. Other than our theoretical contributions we also show empirically that our framework improves the prediction quality in practical meta-learning mechanisms.

As Large Language Models make a breakthrough in natural language processing tasks (NLP), multimodal technique becomes extremely popular. However, it has been shown that multimodal NLP are vulnerable to adversarial attacks, where the outputs of a model can be dramatically changed by a perturbation to the input. While several defense techniques have been proposed both in computer vision and NLP models, the multimodal robustness of models have not been fully explored. In this paper, we study the adversarial robustness provided by modifying loss function of pre-trained multimodal models, by restricting top K softmax outputs. Based on the evaluation and scoring, our experiments show that after a fine-tuning, adversarial robustness of pre-trained models can be significantly improved, against popular attacks. Further research should be studying, such as output diversity, generalization and the robustness-performance trade-off of this kind of loss functions. Our code will be available after this paper is accepted

This paper proposes a latent prompt Transformer model for solving challenging optimization problems such as molecule design, where the goal is to find molecules with optimal values of a target chemical or biological property that can be computed by an existing software. Our proposed model consists of three components. (1) A latent vector whose prior distribution is modeled by a Unet transformation of a Gaussian white noise vector. (2) A molecule generation model that generates the string-based representation of molecule conditional on the latent vector in (1). We adopt the causal Transformer model that takes the latent vector in (1) as prompt. (3) A property prediction model that predicts the value of the target property of a molecule based on a non-linear regression on the latent vector in (1). We call the proposed model the latent prompt Transformer model. After initial training of the model on existing molecules and their property values, we then gradually shift the model distribution towards the region that supports desired values of the target property for the purpose of molecule design. Our experiments show that our proposed model achieves state of the art performances on several benchmark molecule design tasks.

This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

北京阿比特科技有限公司