Offline evaluation of LLMs is crucial in understanding their capacities, though current methods remain underexplored in existing research. In this work, we focus on the offline evaluation of the chain-of-thought capabilities and show how to optimize LLMs based on the proposed evaluation method. To enable offline feedback with rich knowledge and reasoning paths, we use knowledge graphs (e.g., Wikidata5m) to provide feedback on the generated chain of thoughts. Due to the heterogeneity between LLM reasoning and KG structures, direct interaction and feedback from KGs on LLM behavior are challenging, as they require accurate entity linking and grounding of LLM-generated chains of thought in the KG. To address the above challenge, we propose an offline chain-of-thought evaluation framework, OCEAN, which models chain-of-thought reasoning in LLMs as an MDP and evaluate the policy's alignment with KG preference modeling. To overcome the reasoning heterogeneity and grounding problems, we leverage on-policy KG exploration and RL to model a KG policy that generates token-level likelihood distributions for LLM-generated chain-of-thought reasoning paths, simulating KG reasoning preference. Then we incorporate the knowledge-graph feedback on the validity and alignment of the generated reasoning paths into inverse propensity scores and propose KG-IPS estimator. Theoretically, we prove the unbiasedness of the proposed KG-IPS estimator and provide a lower bound on its variance. With the off-policy evaluated value function, we can directly enable off-policy optimization to further enhance chain-of-thought alignment. Our empirical study shows that OCEAN can be efficiently optimized for generating chain-of-thought reasoning paths with higher estimated values without affecting LLMs' general abilities in downstream tasks or their internal knowledge.
The capacity of LLMs to carry out automated qualitative analysis has been questioned by corpus linguists, and it has been argued that corpus-based discourse analysis incorporating LLMs is hindered by issues of unsatisfying performance, hallucination, and irreproducibility. Our proposed method, TACOMORE, aims to address these concerns by serving as an effective prompting framework in this domain. The framework consists of four principles, i.e., Task, Context, Model and Reproducibility, and specifies five fundamental elements of a good prompt, i.e., Role Description, Task Definition, Task Procedures, Contextual Information and Output Format. We conduct experiments on three LLMs, i.e., GPT-4o, Gemini-1.5-Pro and Gemini-1.5.Flash, and find that TACOMORE helps improve LLM performance in three representative discourse analysis tasks, i.e., the analysis of keywords, collocates and concordances, based on an open corpus of COVID-19 research articles. Our findings show the efficacy of the proposed prompting framework TACOMORE in corpus-based discourse analysis in terms of Accuracy, Ethicality, Reasoning, and Reproducibility, and provide novel insights into the application and evaluation of LLMs in automated qualitative studies.
We introduce GaussianOcc, a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views. First, traditional methods for self-supervised 3D occupancy estimation still require ground truth 6D poses from sensors during training. To address this limitation, we propose Gaussian Splatting for Projection (GSP) module to provide accurate scale information for fully self-supervised training from adjacent view projection. Additionally, existing methods rely on volume rendering for final 3D voxel representation learning using 2D signals (depth maps, semantic maps), which is both time-consuming and less effective. We propose Gaussian Splatting from Voxel space (GSV) to leverage the fast rendering properties of Gaussian splatting. As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost (2.7 times faster in training and 5 times faster in rendering). The relevant code is available in //github.com/GANWANSHUI/GaussianOcc.git.
Powerful large language models (LLMs) are increasingly expected to be deployed with lower computational costs, enabling their capabilities on resource-constrained devices. Post-training quantization (PTQ) has emerged as a star approach to achieve this ambition, with best methods compressing weights to less than 2 bit on average. In this paper, we propose Channel-Relaxed Vector Quantization (CRVQ), a novel technique that significantly improves the performance of PTQ baselines at the cost of only minimal additional bits. This state-of-the-art extreme compression method achieves its results through two key innovations: (1) carefully selecting and reordering a very small subset of critical weight channels, and (2) leveraging multiple codebooks to relax the constraint of critical channels. With our method, we demonstrate a 38.9% improvement over the current strongest sub-2-bit PTQ baseline, enabling nearer lossless 1-bit compression. Furthermore, our approach offers flexible customization of quantization bit-width and performance, providing a wider range of deployment options for diverse hardware platforms.
Activation sparsity refers to the existence of considerable weakly-contributed elements among activation outputs. As a prevalent property of the models using the ReLU activation function, activation sparsity has been proven a promising paradigm to boost model inference efficiency. Nevertheless, most large language models (LLMs) adopt activation functions without intrinsic activation sparsity (e.g., GELU and Swish). Some recent efforts have explored introducing ReLU or its variants as the substitutive activation function to help LLMs achieve activation sparsity and inference acceleration, but few can simultaneously obtain high sparsity and comparable model performance. This paper introduces a simple and effective sparsification method named "ProSparse" to push LLMs for higher activation sparsity while maintaining comparable performance. Specifically, after substituting the activation function of LLMs with ReLU, ProSparse adopts progressive sparsity regularization with a factor smoothly increasing along the multi-stage sine curves. This can enhance activation sparsity and mitigate performance degradation by avoiding radical shifts in activation distributions. With ProSparse, we obtain high sparsity of 89.32% for LLaMA2-7B, 88.80% for LLaMA2-13B, and 87.89% for end-size MiniCPM-1B, respectively, achieving comparable performance to their original Swish-activated versions. These present the most sparsely activated models among open-source LLaMA versions and competitive end-size models, considerably surpassing ReluLLaMA-7B (66.98%) and ReluLLaMA-13B (71.56%). Our inference acceleration experiments further demonstrate the significant practical acceleration potential of LLMs with higher activation sparsity, obtaining up to 4.52$\times$ inference speedup.
Current collaborative perception methods often rely on fully annotated datasets, which can be expensive to obtain in practical situations. To reduce annotation costs, some works adopt sparsely supervised learning techniques and generate pseudo labels for the missing instances. However, these methods fail to achieve an optimal confidence threshold that harmonizes the quality and quantity of pseudo labels. To address this issue, we propose an end-to-end Collaborative perception Dual Teacher-Student framework (CoDTS), which employs adaptive complementary learning to produce both high-quality and high-quantity pseudo labels. Specifically, the Main Foreground Mining (MFM) module generates high-quality pseudo labels based on the prediction of the static teacher. Subsequently, the Supplement Foreground Mining (SFM) module ensures a balance between the quality and quantity of pseudo labels by adaptively identifying missing instances based on the prediction of the dynamic teacher. Additionally, the Neighbor Anchor Sampling (NAS) module is incorporated to enhance the representation of pseudo labels. To promote the adaptive complementary learning, we implement a staged training strategy that trains the student and dynamic teacher in a mutually beneficial manner. Extensive experiments demonstrate that the CoDTS effectively ensures an optimal balance of pseudo labels in both quality and quantity, establishing a new state-of-the-art in sparsely supervised collaborative perception.
Large Language Models (LLMs) have achieved remarkable success across various industries due to their exceptional generative capabilities. However, for safe and effective real-world deployments, ensuring honesty and helpfulness is critical. This paper addresses the question: Can we prioritize the helpfulness of LLMs while preserving their honesty? To begin with, we establish exhaustive principles aimed at guaranteeing the honesty of LLM. Additionally, we introduce a novel dataset, referred to as HoneSet, comprising 930 queries spanning six categories meticulously crafted to assess an LLM's capacity for maintaining honesty. Subsequently, we present two approaches to augmenting honesty and helpfulness in LLMs: a training-free enhancement and a fine-tuning-based improvement. The training-free approach, which is based on curiosity-driven prompting, empowers LLMs to articulate internal confusion and uncertainty regarding queries, thereby optimizing their responses. Conversely, the fine-tuning-based method employs a two-stage process inspired by curriculum learning: initially instructing LLMs to discern between honest and dishonest responses, then refining their training to enhance helpfulness. Experiments conducted on nine prominent LLMs demonstrate a significant improvement in alignment with honesty across all models through the implementation of our proposed enhancements. Particularly noteworthy is the 65.3% enhancement observed in Llama3-8b and the remarkable 124.7% improvement in Mistral-7b, as measured by the H$^{2}$ (honest and helpful) assessment. We believe that our work can pave the way for developing more trustworthy LLMs for real-world applications.
Optimization is crucial for MEC networks to function efficiently and reliably, most of which are NP-hard and lack efficient approximation algorithms. This leads to a paucity of optimal solution, constraining the effectiveness of conventional deep learning approaches. Most existing learning-based methods necessitate extensive optimal data and fail to exploit the potential benefits of suboptimal data that can be obtained with greater efficiency and effectiveness. Taking the multi-server multi-user computation offloading (MSCO) problem, which is widely observed in systems like Internet-of-Vehicles (IoV) and Unmanned Aerial Vehicle (UAV) networks, as a concrete scenario, we present a Graph Diffusion-based Solution Generation (GDSG) method. This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably. We transform the optimization issue into distribution-learning and offer a clear explanation of learning from suboptimal training datasets. We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions. We use a simple and efficient heuristic approach to obtain a sufficient amount of training data composed entirely of suboptimal solutions. In our implementation, we enhance the backbone GNN and achieve improved generalization. GDSG also reaches nearly 100\% task orthogonality, ensuring no interference between the discrete and continuous generation tasks. We further reveal that this orthogonality arises from the diffusion-related training loss, rather than the neural network architecture itself. The experiments demonstrate that GDSG surpasses other benchmark methods on both the optimal and suboptimal training datasets. The MSCO datasets has open-sourced at //ieee-dataport.org/13824, as well as the GDSG algorithm codes at //github.com/qiyu3816/GDSG.
While formal models of concurrency tend to focus on synchronous communication, asynchronous communication is relevant in practice. In this paper, we will discuss asynchronous communication in the context of session-based concurrency, the model of computation in which session types specify the structure of the two-party protocols implemented by the channels of a communicating process. We overview recent work on addressing the challenge of ensuring the deadlock-freedom property for message-passing processes that communicate asynchronously in cyclic process networks governed by session types. We offer a gradual presentation of three typed process frameworks and outline how they may be used to guarantee deadlock freedom for a concurrent functional language with sessions.
Perturbation-based mechanisms, such as differential privacy, mitigate gradient leakage attacks by introducing noise into the gradients, thereby preventing attackers from reconstructing clients' private data from the leaked gradients. However, can gradient perturbation protection mechanisms truly defend against all gradient leakage attacks? In this paper, we present the first attempt to break the shield of gradient perturbation protection in Federated Learning for the extraction of private information. We focus on common noise distributions, specifically Gaussian and Laplace, and apply our approach to DNN and CNN models. We introduce Mjolnir, a perturbation-resilient gradient leakage attack that is capable of removing perturbations from gradients without requiring additional access to the original model structure or external data. Specifically, we leverage the inherent diffusion properties of gradient perturbation protection to develop a novel diffusion-based gradient denoising model for Mjolnir. By constructing a surrogate client model that captures the structure of perturbed gradients, we obtain crucial gradient data for training the diffusion model. We further utilize the insight that monitoring disturbance levels during the reverse diffusion process can enhance gradient denoising capabilities, allowing Mjolnir to generate gradients that closely approximate the original, unperturbed versions through adaptive sampling steps. Extensive experiments demonstrate that Mjolnir effectively recovers the protected gradients and exposes the Federated Learning process to the threat of gradient leakage, achieving superior performance in gradient denoising and private data recovery.
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.