亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models are becoming the go-to solution for various language tasks. However, with growing capacity, models are prone to rely on spurious correlations stemming from biases and stereotypes present in the training data. This work proposes a novel method for detecting and mitigating gender bias in language models. We perform causal analysis to identify problematic model components and discover that mid-upper feed-forward layers are most prone to convey biases. Based on the analysis results, we adapt the model by multiplying these layers by a linear projection. Our titular method, DAMA, significantly decreases bias as measured by diverse metrics while maintaining the model's performance on downstream tasks. We release code for our method and models, which retrain LLaMA's state-of-the-art performance while being significantly less biased.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 語言模型化 · 大語言模型 · MoDELS · INFORMS ·
2024 年 3 月 1 日

Exploiting large language models (LLMs) to tackle deductive reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex deductive problems, characterized by plenty of premises (i.e., facts or rules) entailing intricate relationships among entities and requiring multi-hop reasoning. One intuitive solution is to decompose the original task into smaller sub-tasks, and then chain the multiple casual reasoning steps together in a forward (e.g., Selection-Inference) or backward (e.g., LAMBADA) direction. However, these techniques inevitably necessitate a large number of overall stages, leading to computationally expensive operations and a higher possibility of making misleading steps. In addition to stage-by-stage decomposition, we draw inspiration from another aspect of human problem-solving. Humans tend to distill the most relevant information and organize their thoughts systematically (e.g., creating mind maps), which assists them in answering questions or drawing conclusions precisely and quickly. In light of this, we propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to efficiently identify the most pertinent information while eliminating redundancy. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized proofs, the deductive reasoning abilities of LLMs can be better elicited, and the risk of acquiring errors caused by excessive reasoning stages is mitigated. Furthermore, our approach can be combined with the aforementioned ones to further boost their performance. Extensive experimental results on three popular deductive benchmarks (i.e., ProofWriter, PrOntoQA and PrOntoQA-OOD) show that COP significantly outperforms previous state-of-the-art methods.

While large language models (LLMs) have demonstrated increasing power, they have also given rise to a wide range of harmful behaviors. As representatives, jailbreak attacks can provoke harmful or unethical responses from LLMs, even after safety alignment. In this paper, we investigate a novel category of jailbreak attacks specifically designed to target the cognitive structure and processes of LLMs. Specifically, we analyze the safety vulnerability of LLMs in the face of (1) multilingual cognitive overload, (2) veiled expression, and (3) effect-to-cause reasoning. Different from previous jailbreak attacks, our proposed cognitive overload is a black-box attack with no need for knowledge of model architecture or access to model weights. Experiments conducted on AdvBench and MasterKey reveal that various LLMs, including both popular open-source model Llama 2 and the proprietary model ChatGPT, can be compromised through cognitive overload. Motivated by cognitive psychology work on managing cognitive load, we further investigate defending cognitive overload attack from two perspectives. Empirical studies show that our cognitive overload from three perspectives can jailbreak all studied LLMs successfully, while existing defense strategies can hardly mitigate the caused malicious uses effectively.

Existing research has shown that large language models (LLMs) exhibit remarkable performance in language understanding and generation. However, when LLMs are continuously fine-tuned on complex and diverse domain-specific downstream tasks, the inference performance on historical tasks decreases dramatically, which is known as a catastrophic forgetting problem. A trade-off needs to be kept between learning plasticity and memory stability. Plenty of existing works have explored strategies like memory replay, regularization and parameter isolation, but little is known about the geometric connection of various adjacent minima in the continual LLMs fine-tuning scenarios. In this work, we investigate the geometric connections of different minima through the lens of mode connectivity, which means different minima can be connected by a low-loss valley. Through extensive experiments, we uncover the mode connectivity phenomenon in the LLMs continual learning scenario and find that it can strike a balance between plasticity and stability. Building upon these findings, we propose a simple yet effective method called Interpolation-based LoRA (I-LoRA), which constructs a dual-memory experience replay framework based on LoRA parameter interpolations. Extensive experiments and analysis on eight domain-specific CL benchmarks demonstrate that I-LoRA consistently show significant improvement over the previous state-of-the-art approaches with up to $11\%$ performance gains, providing a strong baseline and insights for future research on the large language model continual learning problem. Our code is available at \url{//github.com/which47/LLMCL}.

It is challenging to guide neural network (NN) learning with prior knowledge. In contrast, many known properties, such as spatial smoothness or seasonality, are straightforward to model by choosing an appropriate kernel in a Gaussian process (GP). Many deep learning applications could be enhanced by modeling such known properties. For example, convolutional neural networks (CNNs) are frequently used in remote sensing, which is subject to strong seasonal effects. We propose to blend the strengths of deep learning and the clear modeling capabilities of GPs by using a composite kernel that combines a kernel implicitly defined by a neural network with a second kernel function chosen to model known properties (e.g., seasonality). We implement this idea by combining a deep network and an efficient mapping based on the Nystrom approximation, which we call Implicit Composite Kernel (ICK). We then adopt a sample-then-optimize approach to approximate the full GP posterior distribution. We demonstrate that ICK has superior performance and flexibility on both synthetic and real-world data sets. We believe that ICK framework can be used to include prior information into neural networks in many applications.

Recent advancements in the realm of deep learning, particularly in the development of large language models (LLMs), have demonstrated AI's ability to tackle complex mathematical problems or solving programming challenges. However, the capability to solve well-defined problems based on extensive training data differs significantly from the nuanced process of making scientific discoveries. Trained on almost all human knowledge available, today's sophisticated LLMs basically learn to predict sequences of tokens. They generate mathematical derivations and write code in a similar way as writing an essay, and do not have the ability to pioneer scientific discoveries in the manner a human scientist would do. In this study we delve into the potential of using deep learning to rediscover a fundamental mathematical concept: integrals. By defining integrals as area under the curve, we illustrate how AI can deduce the integral of a given function, exemplified by inferring $\int_{0}^{x} t^2 dt = \frac{x^3}{3}$ and $\int_{0}^{x} ae^{bt} dt = \frac{a}{b} e^{bx} - \frac{a}{b}$. Our experiments show that deep learning models can approach the task of inferring integrals either through a sequence-to-sequence model, akin to language translation, or by uncovering the rudimentary principles of integration, such as $\int_{0}^{x} t^n dt = \frac{x^{n+1}}{n+1}$.

Pre-trained language models are effective in a variety of natural language tasks, but it has been argued their capabilities fall short of fully learning meaning or understanding language. To understand the extent to which language models can learn some form of meaning, we investigate their ability to capture semantics of code beyond superficial frequency and co-occurrence. In contrast to previous research on probing models for linguistic features, we study pre-trained models in a setting that allows for objective and straightforward evaluation of a model's ability to learn semantics. In this paper, we examine whether such models capture the semantics of code, which is precisely and formally defined. Through experiments involving the manipulation of code fragments, we show that code pre-trained models of code learn a robust representation of the computational semantics of code that goes beyond superficial features of form alone

Large language models are often ranked according to their level of alignment with human preferences -- a model is better than other models if its outputs are more frequently preferred by humans. One of the most popular ways to elicit human preferences utilizes pairwise comparisons between the outputs provided by different models to the same inputs. However, since gathering pairwise comparisons by humans is costly and time-consuming, it has become a very common practice to gather pairwise comparisons by a strong large language model -- a model strongly aligned with human preferences. Surprisingly, practitioners cannot currently measure the uncertainty that any mismatch between human and model preferences may introduce in the constructed rankings. In this work, we develop a statistical framework to bridge this gap. Given a small set of pairwise comparisons by humans and a large set of pairwise comparisons by a model, our framework provides a rank-set -- a set of possible ranking positions -- for each of the models under comparison. Moreover, it guarantees that, with a probability greater than or equal to a user-specified value, the rank-sets cover the true ranking consistent with (the distribution of) human pairwise preferences. Our framework is computationally efficient, easy to use, and does not make any assumption about the distribution of human preferences nor about the degree of alignment between the pairwise comparisons by the humans and the strong large language model.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

北京阿比特科技有限公司