亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose new techniques for solving geometric optimization problems involving interpoint distances of a point set in the plane. Given a set $P$ of $n$ points in the plane and an integer $1 \leq k \leq \binom{n}{2}$, the distance selection problem is to find the $k$-th smallest interpoint distance among all pairs of points of $P$. The previously best deterministic algorithm solves the problem in $O(n^{4/3} \log^2 n)$ time [Katz and Sharir, SIAM J. Comput. 1997 and SoCG 1993]. In this paper, we improve their algorithm to $O(n^{4/3} \log n)$ time. Using similar techniques, we also give improved algorithms on both the two-sided and the one-sided discrete Fr\'{e}chet distance with shortcuts problem for two point sets in the plane. For the two-sided problem (resp., one-sided problem), we improve the previous work [Avraham, Filtser, Kaplan, Katz, and Sharir, ACM Trans. Algorithms 2015 and SoCG 2014] by a factor of roughly $\log^2(m+n)$ (resp., $(m+n)^{\epsilon}$), where $m$ and $n$ are the sizes of the two input point sets, respectively. Other problems whose solutions can be improved by our techniques include the reverse shortest path problems for unit-disk graphs. Our techniques are quite general and we believe they will find many other applications in future.

相關內容

In this paper, we study a general low-rank matrix recovery problem with linear measurements corrupted by some noise. The objective is to understand under what conditions on the restricted isometry property (RIP) of the problem local search methods can find the ground truth with a small error. By analyzing the landscape of the non-convex problem, we first propose a global guarantee on the maximum distance between an arbitrary local minimizer and the ground truth under the assumption that the RIP constant is smaller than $1/2$. We show that this distance shrinks to zero as the intensity of the noise reduces. Our new guarantee is sharp in terms of the RIP constant and is much stronger than the existing results. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. Next, we prove the strict saddle property, which guarantees the global convergence of the perturbed gradient descent method in polynomial time. The developed results demonstrate how the noise intensity and the RIP constant of the problem affect the landscape of the problem.

This paper presents a study on the feasibility of using large language models (LLM) for coding with low-resource and domain-specific programming languages that typically lack the amount of data required for effective LLM processing techniques. This study focuses on the econometric scripting language named hansl of the open-source software gretl and employs a proprietary LLM based on GPT-3.5. Our findings suggest that LLMs can be a useful tool for writing, understanding, improving, and documenting gretl code, which includes generating descriptive docstrings for functions and providing precise explanations for abstract and poorly documented econometric code. While the LLM showcased promoting docstring-to-code translation capability, we also identify some limitations, such as its inability to improve certain sections of code and to write accurate unit tests. This study is a step towards leveraging the power of LLMs to facilitate software development in low-resource programming languages and ultimately to lower barriers to entry for their adoption.

In the $Activation$ $k$ $Disjoint$ $st$-$Paths$ ($Activation$ $k$-$DP$) problem we are given a graph $G=(V,E)$ with activation costs $\{c_{uv}^u,c_{uv}^v\}$ for every edge $uv \in E$, a source-sink pair $s,t \in V$, and an integer $k$. The goal is to compute an edge set $F \subseteq E$ of $k$ internally node disjoint $st$-paths of minimum activation cost $\displaystyle \sum_{v \in V}\max_{uv \in E}c_{uv}^v$. The problem admits an easy $2$-approximation algorithm. Alqahtani and Erlebach [CIAC, pages 1-12, 2013] claimed that Activation 2-DP admits a $1.5$-approximation algorithm. Their proof has an error, and we will show that the approximation ratio of their algorithm is at least $2$. We will then give a different algorithm with approximation ratio $1.5$.

We propose a relaxation to the definition of well-structured transition systems (WSTS) while retaining the decidability of boundedness and termination. In our class, we ease the well-quasi-ordered (wqo) condition to be applicable only between states that are reachable one from another. Furthermore, we also relax the monotony condition in the same way. While this retains the decidability of termination and boundedness, it appears that the coverability problem is undecidable. To this end, we define a new notion of monotony, called cover-monotony, which is strictly more general than the usual monotony and still allows us to decide a restricted form of the coverability problem.

The Independent Cutset problem asks whether there is a set of vertices in a given graph that is both independent and a cutset. Such a problem is $\textsf{NP}$-complete even when the input graph is planar and has maximum degree five. In this paper, we first present a $\mathcal{O}^*(1.4423^{n})$-time algorithm for the problem. We also show how to compute a minimum independent cutset (if any) in the same running time. Since the property of having an independent cutset is MSO$_1$-expressible, our main results are concerned with structural parameterizations for the problem considering parameters that are not bounded by a function of the clique-width of the input. We present $\textsf{FPT}$-time algorithms for the problem considering the following parameters: the dual of the maximum degree, the dual of the solution size, the size of a dominating set (where a dominating set is given as an additional input), the size of an odd cycle transversal, the distance to chordal graphs, and the distance to $P_5$-free graphs. We close by introducing the notion of $\alpha$-domination, which allows us to identify more fixed-parameter tractable and polynomial-time solvable cases.

In this paper, we study the weighted $k$-server problem on the uniform metric in both the offline and online settings. We start with the offline setting. In contrast to the (unweighted) $k$-server problem which has a polynomial-time solution using min-cost flows, there are strong computational lower bounds for the weighted $k$-server problem, even on the uniform metric. Specifically, we show that assuming the unique games conjecture, there are no polynomial-time algorithms with a sub-polynomial approximation factor, even if we use $c$-resource augmentation for $c < 2$. Furthermore, if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap requires us to use at least $\ell$ resource augmentation, where $\ell$ is the number of distinct server weights. We complement these results by obtaining a constant-approximation algorithm via LP rounding, with a resource augmentation of $(2+\epsilon)\ell$ for any constant $\epsilon > 0$. In the online setting, an $\exp(k)$ lower bound is known for the competitive ratio of any randomized algorithm for the weighted $k$-server problem on the uniform metric. In contrast, we show that $2\ell$-resource augmentation can bring the competitive ratio down by an exponential factor to only $O(\ell^2 \log \ell)$. Our online algorithm uses the two-stage approach of first obtaining a fractional solution using the online primal-dual framework, and then rounding it online.

While most theoretical run time analyses of discrete randomized search heuristics focused on finite search spaces, we consider the search space $\mathbb{Z}^n$. This is a further generalization of the search space of multi-valued decision variables $\{0,\ldots,r-1\}^n$. We consider as fitness functions the distance to the (unique) non-zero optimum $a$ (based on the $L_1$-metric) and the \ooea which mutates by applying a step-operator on each component that is determined to be varied. For changing by $\pm 1$, we show that the expected optimization time is $\Theta(n \cdot (|a|_{\infty} + \log(|a|_H)))$. In particular, the time is linear in the maximum value of the optimum $a$. Employing a different step operator which chooses a step size from a distribution so heavy-tailed that the expectation is infinite, we get an optimization time of $O(n \cdot \log^2 (|a|_1) \cdot \left(\log (\log (|a|_1))\right)^{1 + \epsilon})$. Furthermore, we show that RLS with step size adaptation achieves an optimization time of $\Theta(n \cdot \log(|a|_1))$. We conclude with an empirical analysis, comparing the above algorithms also with a variant of CMA-ES for discrete search spaces.

We consider the problem of fairly allocating a set of indivisible goods among $n$ agents with additive valuations, using the popular fairness notion of maximin share (MMS). Since MMS allocations do not always exist, a series of works provided existence and algorithms for approximate MMS allocations. The Garg-Taki algorithm gives the current best approximation factor of $(\frac{3}{4} + \frac{1}{12n})$. Most of these results are based on complicated analyses, especially those providing better than $2/3$ factor. Moreover, since no tight example is known of the Garg-Taki algorithm, it is unclear if this is the best factor of this approach. In this paper, we significantly simplify the analysis of this algorithm and also improve the existence guarantee to a factor of $(\frac{3}{4} + \min(\frac{1}{36}, \frac{3}{16n-4}))$. For small $n$, this provides a noticeable improvement. Furthermore, we present a tight example of this algorithm, showing that this may be the best factor one can hope for with the current techniques.

In many modern statistical problems, the limited available data must be used both to develop the hypotheses to test, and to test these hypotheses-that is, both for exploratory and confirmatory data analysis. Reusing the same dataset for both exploration and testing can lead to massive selection bias, leading to many false discoveries. Selective inference is a framework that allows for performing valid inference even when the same data is reused for exploration and testing. In this work, we are interested in the problem of selective inference for data clustering, where a clustering procedure is used to hypothesize a separation of the data points into a collection of subgroups, and we then wish to test whether these data-dependent clusters in fact represent meaningful differences within the data. Recent work by Gao et al. [2022] provides a framework for doing selective inference for this setting, where a hierarchical clustering algorithm is used for producing the cluster assignments, which was then extended to k-means clustering by Chen and Witten [2022]. Both these works rely on assuming a known covariance structure for the data, but in practice, the noise level needs to be estimated-and this is particularly challenging when the true cluster structure is unknown. In our work, we extend this work to the setting of noise with unknown variance, and provide a selective inference method for this more general setting. Empirical results show that our new method is better able to maintain high power while controlling Type I error when the true noise level is unknown.

The optimization of open-loop shallow geothermal systems, which includes both design and operational aspects, is an important research area aimed at improving their efficiency and sustainability and the effective management of groundwater as a shallow geothermal resource. This paper investigates various approaches to address optimization problems arising from such research questions. The identified optimization approaches are thoroughly analyzed based on criteria such as computational efficiency and applicability. Moreover, a novel classification scheme is introduced that categorizes the approaches according to the type of groundwater simulation model (numerical or simplified) and the optimization algorithm used (gradient-based or derivative-free). Finally, a comprehensive review of existing approaches is provided, highlighting their strengths and limitations and offering recommendations for both the use of existing approaches and the development of new ones in this field.

北京阿比特科技有限公司