Fully decentralised federated learning enables collaborative training of individual machine learning models on distributed devices on a network while keeping the training data localised. This approach enhances data privacy and eliminates both the single point of failure and the necessity for central coordination. Our research highlights that the effectiveness of decentralised federated learning is significantly influenced by the network topology of connected devices. A simplified numerical model for studying the early behaviour of these systems leads us to an improved artificial neural network initialisation strategy, which leverages the distribution of eigenvector centralities of the nodes of the underlying network, leading to a radically improved training efficiency. Additionally, our study explores the scaling behaviour and choice of environmental parameters under our proposed initialisation strategy. This work paves the way for more efficient and scalable artificial neural network training in a distributed and uncoordinated environment, offering a deeper understanding of the intertwining roles of network structure and learning dynamics.
Reinforcement learning (RL) presents a promising framework to learn policies through environment interaction, but often requires an infeasible amount of interaction data to solve complex tasks from sparse rewards. One direction includes augmenting RL with offline data demonstrating desired tasks, but past work often require a lot of high-quality demonstration data that is difficult to obtain, especially for domains such as robotics. Our approach consists of a reverse curriculum followed by a forward curriculum. Unique to our approach compared to past work is the ability to efficiently leverage more than one demonstration via a per-demonstration reverse curriculum generated via state resets. The result of our reverse curriculum is an initial policy that performs well on a narrow initial state distribution and helps overcome difficult exploration problems. A forward curriculum is then used to accelerate the training of the initial policy to perform well on the full initial state distribution of the task and improve demonstration and sample efficiency. We show how the combination of a reverse curriculum and forward curriculum in our method, RFCL, enables significant improvements in demonstration and sample efficiency compared against various state-of-the-art learning-from-demonstration baselines, even solving previously unsolvable tasks that require high precision and control.
The performance of learning models often deteriorates when deployed in out-of-sample environments. To ensure reliable deployment, we propose a stability evaluation criterion based on distributional perturbations. Conceptually, our stability evaluation criterion is defined as the minimal perturbation required on our observed dataset to induce a prescribed deterioration in risk evaluation. In this paper, we utilize the optimal transport (OT) discrepancy with moment constraints on the \textit{(sample, density)} space to quantify this perturbation. Therefore, our stability evaluation criterion can address both \emph{data corruptions} and \emph{sub-population shifts} -- the two most common types of distribution shifts in real-world scenarios. To further realize practical benefits, we present a series of tractable convex formulations and computational methods tailored to different classes of loss functions. The key technical tool to achieve this is the strong duality theorem provided in this paper. Empirically, we validate the practical utility of our stability evaluation criterion across a host of real-world applications. These empirical studies showcase the criterion's ability not only to compare the stability of different learning models and features but also to provide valuable guidelines and strategies to further improve models.
Creating effective educational materials generally requires expensive and time-consuming studies of student learning outcomes. To overcome this barrier, one idea is to build computational models of student learning and use them to optimize instructional materials. However, it is difficult to model the cognitive processes of learning dynamics. We propose an alternative approach that uses Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes. Specifically, we use GPT-3.5 to evaluate the overall effect of instructional materials on different student groups and find that it can replicate well-established educational findings such as the Expertise Reversal Effect and the Variability Effect. This demonstrates the potential of LMs as reliable evaluators of educational content. Building on this insight, we introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function. We apply this approach to create math word problem worksheets aimed at maximizing student learning gains. Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences. We conclude by discussing potential divergences between human and LM opinions and the resulting pitfalls of automating instructional design.
Recent advances in self-supervised learning have highlighted the efficacy of data augmentation in learning data representation from unlabeled data. Training a linear model atop these enhanced representations can yield an adept classifier. Despite the remarkable empirical performance, the underlying mechanisms that enable data augmentation to unravel nonlinear data structures into linearly separable representations remain elusive. This paper seeks to bridge this gap by investigating under what conditions learned representations can linearly separate manifolds when data is drawn from a multi-manifold model. Our investigation reveals that data augmentation offers additional information beyond observed data and can thus improve the information-theoretic optimal rate of linear separation capacity. In particular, we show that self-supervised learning can linearly separate manifolds with a smaller distance than unsupervised learning, underscoring the additional benefits of data augmentation. Our theoretical analysis further underscores that the performance of downstream linear classifiers primarily hinges on the linear separability of data representations rather than the size of the labeled data set, reaffirming the viability of constructing efficient classifiers with limited labeled data amid an expansive unlabeled data set.
The robust constrained Markov decision process (RCMDP) is a recent task-modelling framework for reinforcement learning that incorporates behavioural constraints and that provides robustness to errors in the transition dynamics model through the use of an uncertainty set. Simulating RCMDPs requires computing the worst-case dynamics based on value estimates for each state, an approach which has previously been used in the Robust Constrained Policy Gradient (RCPG). Highlighting potential downsides of RCPG such as not robustifying the full constrained objective and the lack of incremental learning, this paper introduces two algorithms, called RCPG with Robust Lagrangian and Adversarial RCPG. RCPG with Robust Lagrangian modifies RCPG by taking the worst-case dynamics based on the Lagrangian rather than either the value or the constraint. Adversarial RCPG also formulates the worst-case dynamics based on the Lagrangian but learns this directly and incrementally as an adversarial policy through gradient descent rather than indirectly and abruptly through constrained optimisation on a sorted value list. A theoretical analysis first derives the Lagrangian policy gradient for the policy optimisation of both proposed algorithms and then the adversarial policy gradient to learn the adversary for Adversarial RCPG. Empirical experiments injecting perturbations in inventory management and safe navigation tasks demonstrate the competitive performance of both algorithms compared to traditional RCPG variants as well as non-robust and non-constrained ablations. In particular, Adversarial RCPG ranks among the top two performing algorithms on all tests.
Federated learning (FL) enables collaborative model training while preserving data privacy, making it suitable for decentralized human-centered AI applications. However, a significant research gap remains in ensuring fairness in these systems. Current fairness strategies in FL require knowledge of bias-creating/sensitive attributes, clashing with FL's privacy principles. Moreover, in human-centered datasets, sensitive attributes may remain latent. To tackle these challenges, we present a novel bias mitigation approach inspired by "Fairness without Demographics" in machine learning. The presented approach achieves fairness without needing knowledge of sensitive attributes by minimizing the top eigenvalue of the Hessian matrix during training, ensuring equitable loss landscapes across FL participants. Notably, we introduce a novel FL aggregation scheme that promotes participating models based on error rates and loss landscape curvature attributes, fostering fairness across the FL system. This work represents the first approach to attaining "Fairness without Demographics" in human-centered FL. Through comprehensive evaluation, our approach demonstrates effectiveness in balancing fairness and efficacy across various real-world applications, FL setups, and scenarios involving single and multiple bias-inducing factors, representing a significant advancement in human-centered FL.
Social learning is a non-Bayesian framework for distributed hypothesis testing aimed at learning the true state of the environment. Traditionally, the agents are assumed to receive observations conditioned on the same true state, although it is also possible to examine the case of heterogeneous models across the graph. One important special case is when heterogeneity is caused by the presence of malicious agents whose goal is to move the agents towards a wrong hypothesis. In this work, we propose an algorithm that allows to discover the true state of every individual agent based on the sequence of their beliefs. In so doing, the methodology is also able to locate malicious behavior.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.