亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine learning-based performance models are increasingly being used to build critical job scheduling and application optimization decisions. Traditionally, these models assume that data distribution does not change as more samples are collected over time. However, owing to the complexity and heterogeneity of production HPC systems, they are susceptible to hardware degradation, replacement, and/or software patches, which can lead to drift in the data distribution that can adversely affect the performance models. To this end, we develop continually learning performance models that account for the distribution drift, alleviate catastrophic forgetting, and improve generalizability. Our best model was able to retain accuracy, regardless of having to learn the new distribution of data inflicted by system changes, while demonstrating a 2x improvement in the prediction accuracy of the whole data sequence in comparison to the naive approach.

相關內容

Machine unlearning, the ability for a machine learning model to forget, is becoming increasingly important to comply with data privacy regulations, as well as to remove harmful, manipulated, or outdated information. The key challenge lies in forgetting specific information while protecting model performance on the remaining data. While current state-of-the-art methods perform well, they typically require some level of retraining over the retained data, in order to protect or restore model performance. This adds computational overhead and mandates that the training data remain available and accessible, which may not be feasible. In contrast, other methods employ a retrain-free paradigm, however, these approaches are prohibitively computationally expensive and do not perform on par with their retrain-based counterparts. We present Selective Synaptic Dampening (SSD), a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data. First, SSD uses the Fisher information matrix of the training and forgetting data to select parameters that are disproportionately important to the forget set. Second, SSD induces forgetting by dampening these parameters proportional to their relative importance to the forget set with respect to the wider training data. We evaluate our method against several existing unlearning methods in a range of experiments using ResNet18 and Vision Transformer. Results show that the performance of SSD is competitive with retrain-based post hoc methods, demonstrating the viability of retrain-free post hoc unlearning approaches.

Maximum likelihood estimation (MLE) of latent variable models is often recast as an optimization problem over the extended space of parameters and probability distributions. For example, the Expectation Maximization (EM) algorithm can be interpreted as coordinate descent applied to a suitable free energy functional over this space. Recently, this perspective has been combined with insights from optimal transport and Wasserstein gradient flows to develop particle-based algorithms applicable to wider classes of models than standard EM. Drawing inspiration from prior works which interpret `momentum-enriched' optimisation algorithms as discretizations of ordinary differential equations, we propose an analogous dynamical systems-inspired approach to minimizing the free energy functional over the extended space of parameters and probability distributions. The result is a dynamic system that blends elements of Nesterov's Accelerated Gradient method, the underdamped Langevin diffusion, and particle methods. Under suitable assumptions, we establish quantitative convergence of the proposed system to the unique minimiser of the functional in continuous time. We then propose a numerical discretization of this system which enables its application to parameter estimation in latent variable models. Through numerical experiments, we demonstrate that the resulting algorithm converges faster than existing methods and compares favourably with other (approximate) MLE algorithms.

Machine learning models for speech emotion recognition (SER) can be trained for different tasks and are usually evaluated on the basis of a few available datasets per task. Tasks could include arousal, valence, dominance, emotional categories, or tone of voice. Those models are mainly evaluated in terms of correlation or recall, and always show some errors in their predictions. The errors manifest themselves in model behaviour, which can be very different along different dimensions even if the same recall or correlation is achieved by the model. This paper investigates behavior of speech emotion recognition models with a testing framework which requires models to fulfill conditions in terms of correctness, fairness, and robustness.

In software engineering, the meticulous configuration of software tools is crucial in ensuring optimal performance within intricate systems. However, the complexity inherent in selecting optimal configurations is exacerbated by the high-dimensional search spaces presented in modern applications. Conventional trial-and-error or intuition-driven methods are both inefficient and error-prone, impeding scalability and reproducibility. In this study, we embark on an exploration of leveraging Large-Language Models (LLMs) to streamline the software configuration process. We identify that the task of hyperparameter configuration for machine learning components within intelligent applications is particularly challenging due to the extensive search space and performance-critical nature. Existing methods, including Bayesian optimization, have limitations regarding initial setup, computational cost, and convergence efficiency. Our work presents a novel approach that employs LLMs, such as Chat-GPT, to identify starting conditions and narrow down the search space, improving configuration efficiency. We conducted a series of experiments to investigate the variability of LLM-generated responses, uncovering intriguing findings such as potential response caching and consistent behavior based on domain-specific keywords. Furthermore, our results from hyperparameter optimization experiments reveal the potential of LLMs in expediting initialization processes and optimizing configurations. While our initial insights are promising, they also indicate the need for further in-depth investigations and experiments in this domain.

Developing deep learning models that effectively learn object-centric representations, akin to human cognition, remains a challenging task. Existing approaches facilitate object discovery by representing objects as fixed-size vectors, called ``slots'' or ``object files''. While these approaches have shown promise in certain scenarios, they still exhibit certain limitations. First, they rely on architectural priors which can be unreliable and usually require meticulous engineering to identify the correct objects. Second, there has been a notable gap in investigating the practical utility of these representations in downstream tasks. To address the first limitation, we introduce a method that explicitly optimizes the constraint that each object in a scene should be associated with a distinct slot. We formalize this constraint by introducing consistency objectives which are cyclic in nature. By integrating these consistency objectives into various existing slot-based object-centric methods, we showcase substantial improvements in object-discovery performance. These enhancements consistently hold true across both synthetic and real-world scenes, underscoring the effectiveness and adaptability of the proposed approach. To tackle the second limitation, we apply the learned object-centric representations from the proposed method to two downstream reinforcement learning tasks, demonstrating considerable performance enhancements compared to conventional slot-based and monolithic representation learning methods. Our results suggest that the proposed approach not only improves object discovery, but also provides richer features for downstream tasks.

Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.

Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司