Large Language Models (LLMs) are promising analytical tools. They can augment human epistemic, cognitive and reasoning abilities, and support 'sensemaking', making sense of a complex environment or subject by analysing large volumes of data with a sensitivity to context and nuance absent in earlier text processing systems. This paper presents a pilot experiment that explores how LLMs can support thematic analysis of controversial topics. We compare how human researchers and two LLMs GPT-4 and Llama 2 categorise excerpts from media coverage of the controversial Australian Robodebt scandal. Our findings highlight intriguing overlaps and variances in thematic categorisation between human and machine agents, and suggest where LLMs can be effective in supporting forms of discourse and thematic analysis. We argue LLMs should be used to augment, and not replace human interpretation, and we add further methodological insights and reflections to existing research on the application of automation to qualitative research methods. We also introduce a novel card-based design toolkit, for both researchers and practitioners to further interrogate LLMs as analytical tools.
Large Language Models (LLMs) have demonstrated exceptional task-solving capabilities, increasingly adopting roles akin to human-like assistants. The broader integration of LLMs into society has sparked interest in whether they manifest psychological attributes, and whether these attributes are stable-inquiries that could deepen the understanding of their behaviors. Inspired by psychometrics, this paper presents a framework for investigating psychology in LLMs, including psychological dimension identification, assessment dataset curation, and assessment with results validation. Following this framework, we introduce a comprehensive psychometrics benchmark for LLMs that covers six psychological dimensions: personality, values, emotion, theory of mind, motivation, and intelligence. This benchmark includes thirteen datasets featuring diverse scenarios and item types. Our findings indicate that LLMs manifest a broad spectrum of psychological attributes. We also uncover discrepancies between LLMs' self-reported traits and their behaviors in real-world scenarios. This paper demonstrates a thorough psychometric assessment of LLMs, providing insights into reliable evaluation and potential applications in AI and social sciences.
Large Language Models (LLMs) are expected to significantly contribute to patient care, diagnostics, and administrative processes. Emerging biomedical LLMs aim to address healthcare-specific challenges, including privacy demands and computational constraints. Assessing the models' suitability for this sensitive application area is of the utmost importance. However, evaluation has primarily been limited to non-clinical tasks, which do not reflect the complexity of practical clinical applications. To fill this gap, we present the Clinical Language Understanding Evaluation (CLUE), a benchmark tailored to evaluate LLMs on clinical tasks. CLUE includes six tasks to test the practical applicability of LLMs in complex healthcare settings. Our evaluation includes a total of $25$ LLMs. In contrast to previous evaluations, CLUE shows a decrease in performance for nine out of twelve biomedical models. Our benchmark represents a step towards a standardized approach to evaluating and developing LLMs in healthcare to align future model development with the real-world needs of clinical application. We open-source all evaluation scripts and datasets for future research at //github.com/TIO-IKIM/CLUE.
Oblivious Transfer (OT) is a fundamental cryptographic protocol with applications in secure Multi-Party Computation, Federated Learning, and Private Set Intersection. With the advent of quantum computing, it is crucial to develop unconditionally secure core primitives like OT to ensure their continued security in the post-quantum era. Despite over four decades since OT's introduction, the literature has predominantly relied on computational assumptions, except in cases using unconventional methods like noisy channels or a fully trusted party. Introducing "Supersonic OT", a highly efficient and unconditionally secure OT scheme that avoids public-key-based primitives, we offer an alternative to traditional approaches. Supersonic OT enables a receiver to obtain a response of size O(1). Its simple (yet non-trivial) design facilitates easy security analysis and implementation. The protocol employs a basic secret-sharing scheme, controlled swaps, the one-time pad, and a third-party helper who may be corrupted by a semi-honest adversary. Our implementation and runtime analysis indicate that a single instance of Supersonic OT completes in 0.35 milliseconds, making it up to 2000 times faster than the state-of-the-art base OT.
We introduce Hoop Diagrams, a new visualization technique for set data. Hoop Diagrams are a circular visualization with hoops representing sets and sectors representing set intersections. We present an interactive tool for drawing Hoop Diagrams and describe a user study comparing them with Linear Diagrams. The results show only small differences, with users answering questions more quickly with Linear Diagrams, but answering some questions more accurately with Hoop Diagrams. Interaction data indicates that those using set order and intersection highlighting were more successful at answering questions, but those who used other interactions had a slower response. The similarity in usability suggests that the diagram type should be chosen based on the presentation method. Linear Diagrams increase in the horizontal direction with the number of intersections, leading to difficulties fitting on a screen. Hoop Diagrams al-ways have a square aspect ratio.
Spiking neural networks (SNNs) are gaining increasing attention as potential computationally efficient alternatives to traditional artificial neural networks(ANNs). However, the unique information propagation mechanisms and the complexity of SNN neuron models pose challenges for adopting traditional methods developed for ANNs to SNNs. These challenges include both weight learning and architecture design. While surrogate gradient learning has shown some success in addressing the former challenge, the latter remains relatively unexplored. Recently, a novel paradigm utilizing evolutionary computation methods has emerged to tackle these challenges. This approach has resulted in the development of a variety of energy-efficient and high-performance SNNs across a wide range of machine learning benchmarks. In this paper, we present a survey of these works and initiate discussions on potential challenges ahead.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
Medical Visual Question Answering (VQA) is a combination of medical artificial intelligence and popular VQA challenges. Given a medical image and a clinically relevant question in natural language, the medical VQA system is expected to predict a plausible and convincing answer. Although the general-domain VQA has been extensively studied, the medical VQA still needs specific investigation and exploration due to its task features. In the first part of this survey, we cover and discuss the publicly available medical VQA datasets up to date about the data source, data quantity, and task feature. In the second part, we review the approaches used in medical VQA tasks. In the last part, we analyze some medical-specific challenges for the field and discuss future research directions.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.