Vehicle anomaly detection plays a vital role in highway safety applications such as accident prevention, rapid response, traffic flow optimization, and work zone safety. With the surge of the Internet of Things (IoT) in recent years, there has arisen a pressing demand for Artificial Intelligence (AI) based anomaly detection methods designed to meet the requirements of IoT devices. Catering to this futuristic vision, we introduce a lightweight approach to vehicle anomaly detection by utilizing the power of trajectory prediction. Our proposed design identifies vehicles deviating from expected paths, indicating highway risks from different camera-viewing angles from real-world highway datasets. On top of that, we present VegaEdge - a sophisticated AI confluence designed for real-time security and surveillance applications in modern highway settings through edge-centric IoT-embedded platforms equipped with our anomaly detection approach. Extensive testing across multiple platforms and traffic scenarios showcases the versatility and effectiveness of VegaEdge. This work also presents the Carolinas Anomaly Dataset (CAD), to bridge the existing gap in datasets tailored for highway anomalies. In real-world scenarios, our anomaly detection approach achieves an AUC-ROC of 0.94, and our proposed VegaEdge design, on an embedded IoT platform, processes 738 trajectories per second in a typical highway setting. The dataset is available at //github.com/TeCSAR-UNCC/Carolinas_Dataset#chd-anomaly-test-set .
LiDAR-camera fusion can enhance the performance of 3D object detection by utilizing complementary information between depth-aware LiDAR points and semantically rich images. Existing voxel-based methods face significant challenges when fusing sparse voxel features with dense image features in a one-to-one manner, resulting in the loss of the advantages of images, including semantic and continuity information, leading to sub-optimal detection performance, especially at long distances. In this paper, we present VoxelNextFusion, a multi-modal 3D object detection framework specifically designed for voxel-based methods, which effectively bridges the gap between sparse point clouds and dense images. In particular, we propose a voxel-based image pipeline that involves projecting point clouds onto images to obtain both pixel- and patch-level features. These features are then fused using a self-attention to obtain a combined representation. Moreover, to address the issue of background features present in patches, we propose a feature importance module that effectively distinguishes between foreground and background features, thus minimizing the impact of the background features. Extensive experiments were conducted on the widely used KITTI and nuScenes 3D object detection benchmarks. Notably, our VoxelNextFusion achieved around +3.20% in [email protected] improvement for car detection in hard level compared to the Voxel R-CNN baseline on the KITTI test dataset
Autonomous driving and intelligent transportation applications have dramatically increased the demand for high-accuracy and low-latency localization services. While cellular networks are potentially capable of target detection and localization, achieving accurate and reliable positioning faces critical challenges. Particularly, the relatively small radar cross sections (RCS) of moving targets and the high complexity for measurement association give rise to weak echo signals and discrepancies in the measurements. To tackle this issue, we propose a novel approach for multi-target localization by leveraging the controllable signal reflection capabilities of intelligent reflecting surfaces (IRSs). Specifically, IRSs are strategically mounted on the targets (e.g., vehicles and robots), enabling effective association of multiple measurements and facilitating the localization process. We aim to minimize the maximum Cram\'er-Rao lower bound (CRLB) of targets by jointly optimizing the target association, the IRS phase shifts, and the dwell time. However, solving this CRLB optimization problem is non-trivial due to the non-convex objective function and closely coupled variables. For single-target localization, a simplified closed-form expression is presented for the case where base stations (BSs) can be deployed flexibly, and the optimal BS location is derived to provide a lower performance bound of the original problem ...
Software development in the aerospace domain requires adhering to strict, high-quality standards. While there exist regulatory guidelines for commercial software in this domain (e.g., ARP-4754 and DO-178), these do not apply to software with deep neural network (DNN) components. Consequently, it is unclear how to allow aerospace systems to benefit from the deep learning revolution. Our work here seeks to address this challenge with a novel, output-centric approach for DNN certification. Our method employs statistical verification techniques, and has the key advantage of being able to flag specific inputs for which the DNN's output may be unreliable - so that they may be later inspected by a human expert. To achieve this, our method conducts a statistical analysis of the DNN's predictions for other, nearby inputs, in order to detect inconsistencies. This is in contrast to existing techniques, which typically attempt to certify the entire DNN, as opposed to individual outputs. Our method uses the DNN as a black-box, and makes no assumptions about its topology. We hope that this work constitutes another step towards integrating DNNs in safety-critical applications - especially in the aerospace domain, where high standards of quality and reliability are crucial.
As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named \textit{lookahead}, introduces a \textit{multi-branch} strategy. Instead of generating a single token at a time, we propose a \textit{Trie-based Retrieval} (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a \textit{Verification and Accept} (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: //github.com/alipay/PainlessInferenceAcceleration.
Correspondence pruning aims to find correct matches (inliers) from an initial set of putative correspondences, which is a fundamental task for many applications. The process of finding is challenging, given the varying inlier ratios between scenes/image pairs due to significant visual differences. However, the performance of the existing methods is usually limited by the problem of lacking visual cues (\eg texture, illumination, structure) of scenes. In this paper, we propose a Visual-Spatial Fusion Transformer (VSFormer) to identify inliers and recover camera poses accurately. Firstly, we obtain highly abstract visual cues of a scene with the cross attention between local features of two-view images. Then, we model these visual cues and correspondences by a joint visual-spatial fusion module, simultaneously embedding visual cues into correspondences for pruning. Additionally, to mine the consistency of correspondences, we also design a novel module that combines the KNN-based graph and the transformer, effectively capturing both local and global contexts. Extensive experiments have demonstrated that the proposed VSFormer outperforms state-of-the-art methods on outdoor and indoor benchmarks. Our code is provided at the following repository: //github.com/sugar-fly/VSFormer.
Out-of-distribution (OOD) detection plays a crucial role in ensuring the security of neural networks. Existing works have leveraged the fact that In-distribution (ID) samples form a subspace in the feature space, achieving state-of-the-art (SOTA) performance. However, the comprehensive characteristics of the ID subspace still leave under-explored. Recently, the discovery of Neural Collapse ($\mathcal{NC}$) sheds light on novel properties of the ID subspace. Leveraging insight from $\mathcal{NC}$, we observe that the Principal Angle between the features and the ID feature subspace forms a superior representation for measuring the likelihood of OOD. Building upon this observation, we propose a novel $\mathcal{NC}$-inspired OOD scoring function, named Entropy-enhanced Principal Angle (EPA), which integrates both the global characteristic of the ID subspace and its inner property. We experimentally compare EPA with various SOTA approaches, validating its superior performance and robustness across different network architectures and OOD datasets.
Given a text query, partially relevant video retrieval (PRVR) seeks to find untrimmed videos containing pertinent moments in a database. For PRVR, clip modeling is essential to capture the partial relationship between texts and videos. Current PRVR methods adopt scanning-based clip construction to achieve explicit clip modeling, which is information-redundant and requires a large storage overhead. To solve the efficiency problem of PRVR methods, this paper proposes GMMFormer, a Gaussian-Mixture-Model based Transformer which models clip representations implicitly. During frame interactions, we incorporate Gaussian-Mixture-Model constraints to focus each frame on its adjacent frames instead of the whole video. Then generated representations will contain multi-scale clip information, achieving implicit clip modeling. In addition, PRVR methods ignore semantic differences between text queries relevant to the same video, leading to a sparse embedding space. We propose a query diverse loss to distinguish these text queries, making the embedding space more intensive and contain more semantic information. Extensive experiments on three large-scale video datasets (i.e., TVR, ActivityNet Captions, and Charades-STA) demonstrate the superiority and efficiency of GMMFormer. Code is available at \url{//github.com/huangmozhi9527/GMMFormer}.
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.
Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.