Online action detection is the task of predicting the action as soon as it happens in a streaming video. A major challenge is that the model does not have access to the future and has to solely rely on the history, i.e., the frames observed so far, to make predictions. It is therefore important to accentuate parts of the history that are more informative to the prediction of the current frame. We present GateHUB, Gated History Unit with Background Suppression, that comprises a novel position-guided gated cross-attention mechanism to enhance or suppress parts of the history as per how informative they are for current frame prediction. GateHUB further proposes Future-augmented History (FaH) to make history features more informative by using subsequently observed frames when available. In a single unified framework, GateHUB integrates the transformer's ability of long-range temporal modeling and the recurrent model's capacity to selectively encode relevant information. GateHUB also introduces a background suppression objective to further mitigate false positive background frames that closely resemble the action frames. Extensive validation on three benchmark datasets, THUMOS, TVSeries, and HDD, demonstrates that GateHUB significantly outperforms all existing methods and is also more efficient than the existing best work. Furthermore, a flow-free version of GateHUB is able to achieve higher or close accuracy at 2.8x higher frame rate compared to all existing methods that require both RGB and optical flow information for prediction.
While much attention has been devoted to the causes of opinion change, little is known about its consequences. Our study sheds a light on the relationship between one user's opinion change episode and subsequent behavioral change on an online social media, Reddit. In particular, we look at r/ChangeMyView, an online community dedicated to debating one's own opinions. Interestingly, this forum adopts a well-codified schema for explicitly self-reporting opinion change. Starting from this ground truth, we analyze changes in future online information consumption behavior that arise after a self-reported opinion change on sociopolitical topics; and in particular, operationalized in this work as the participation to sociopolitical subreddits. Such participation profile is important as it represents one's information diet, and is a reliable proxy for, e.g., political affiliation or health choices. We find that people who report an opinion change are significantly more likely to change their future participation in a specific subset of online communities. We characterize which communities are more likely to be abandoned after opinion change, and find a significant association (r=0.46) between propaganda-like language used in a community and the increase in chances of leaving it. We find comparable results (r=0.39) for the opposite direction, i.e., joining a community. This finding suggests how propagandistic communities act as a first gateway to internalize a shift in one's sociopolitical opinion. Finally, we show that the textual content of the discussion associated with opinion change is indicative of which communities are going to be subject to a participation change. In fact, a predictive model based only on the opinion change post is able to pinpoint these communities with an AP@5 of 0.20, similar to what can be reached by using all the past history of participation in communities.
Most of existing methods for few-shot object detection follow the fine-tuning paradigm, which potentially assumes that the class-agnostic generalizable knowledge can be learned and transferred implicitly from base classes with abundant samples to novel classes with limited samples via such a two-stage training strategy. However, it is not necessarily true since the object detector can hardly distinguish between class-agnostic knowledge and class-specific knowledge automatically without explicit modeling. In this work we propose to learn three types of class-agnostic commonalities between base and novel classes explicitly: recognition-related semantic commonalities, localization-related semantic commonalities and distribution commonalities. We design a unified distillation framework based on a memory bank, which is able to perform distillation of all three types of commonalities jointly and efficiently. Extensive experiments demonstrate that our method can be readily integrated into most of existing fine-tuning based methods and consistently improve the performance by a large margin.
Traffic speed prediction is the key to many valuable applications, and it is also a challenging task because of its various influencing factors. Recent work attempts to obtain more information through various hybrid models, thereby improving the prediction accuracy. However, the spatial information acquisition schemes of these methods have two-level differentiation problems. Either the modeling is simple but contains little spatial information, or the modeling is complete but lacks flexibility. In order to introduce more spatial information on the basis of ensuring flexibility, this paper proposes IRNet (Transferable Intersection Reconstruction Network). First, this paper reconstructs the intersection into a virtual intersection with the same structure, which simplifies the topology of the road network. Then, the spatial information is subdivided into intersection information and sequence information of traffic flow direction, and spatiotemporal features are obtained through various models. Third, a self-attention mechanism is used to fuse spatiotemporal features for prediction. In the comparison experiment with the baseline, not only the prediction effect, but also the transfer performance has obvious advantages.
In recent years, video instance segmentation (VIS) has been largely advanced by offline models, while online models gradually attracted less attention possibly due to their inferior performance. However, online methods have their inherent advantage in handling long video sequences and ongoing videos while offline models fail due to the limit of computational resources. Therefore, it would be highly desirable if online models can achieve comparable or even better performance than offline models. By dissecting current online models and offline models, we demonstrate that the main cause of the performance gap is the error-prone association between frames caused by the similar appearance among different instances in the feature space. Observing this, we propose an online framework based on contrastive learning that is able to learn more discriminative instance embeddings for association and fully exploit history information for stability. Despite its simplicity, our method outperforms all online and offline methods on three benchmarks. Specifically, we achieve 49.5 AP on YouTube-VIS 2019, a significant improvement of 13.2 AP and 2.1 AP over the prior online and offline art, respectively. Moreover, we achieve 30.2 AP on OVIS, a more challenging dataset with significant crowding and occlusions, surpassing the prior art by 14.8 AP. The proposed method won first place in the video instance segmentation track of the 4th Large-scale Video Object Segmentation Challenge (CVPR2022). We hope the simplicity and effectiveness of our method, as well as our insight into current methods, could shed light on the exploration of VIS models.
Traditionally, in Audio Recognition pipeline, noise is suppressed by the "frontend", relying on preprocessing techniques such as speech enhancement. However, it is not guaranteed that noise will not cascade into downstream pipelines. To understand the actual influence of noise on the entire audio pipeline, in this paper, we directly investigate the impact of noise on a different types of neural models without the preprocessing step. We measure the recognition performances of 4 different neural network models on the task of environment sound classification under the 3 types of noises: \emph{occlusion} (to emulate intermittent noise), \emph{Gaussian} noise (models continuous noise), and \emph{adversarial perturbations} (worst case scenario). Our intuition is that the different ways in which these models process their input (i.e. CNNs have strong locality inductive biases, which Transformers do not have) should lead to observable differences in performance and/ or robustness, an understanding of which will enable further improvements. We perform extensive experiments on AudioSet which is the largest weakly-labeled sound event dataset available. We also seek to explain the behaviors of different models through output distribution change and weight visualization.
Our theoretical understanding of deep learning has not kept pace with its empirical success. While network architecture is known to be critical, we do not yet understand its effect on learned representations and network behavior, or how this architecture should reflect task structure.In this work, we begin to address this gap by introducing the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics within an architecture. Crucially, because of the gating, these networks can compute nonlinear functions of their input. We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning. Our analysis demonstrates that the learning dynamics in structured networks can be conceptualized as a neural race with an implicit bias towards shared representations, which then govern the model's ability to systematically generalize, multi-task, and transfer. We validate our key insights on naturalistic datasets and with relaxed assumptions. Taken together, our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures and the role of modularity and compositionality in solving real-world problems. The code and results are available at //www.saxelab.org/gated-dln .
Crises such as natural disasters, global pandemics, and social unrest continuously threaten our world and emotionally affect millions of people worldwide in distinct ways. Understanding emotions that people express during large-scale crises helps inform policy makers and first responders about the emotional states of the population as well as provide emotional support to those who need such support. We present CovidEmo, ~3K English tweets labeled with emotions and temporally distributed across 18 months. Our analyses reveal the emotional toll caused by COVID-19, and changes of the social narrative and associated emotions over time. Motivated by the time-sensitive nature of crises and the cost of large-scale annotation efforts, we examine how well large pre-trained language models generalize across domains and timeline in the task of perceived emotion prediction in the context of COVID-19. Our analyses suggest that cross-domain information transfers occur, yet there are still significant gaps. We propose semi-supervised learning as a way to bridge this gap, obtaining significantly better performance using unlabeled data from the target domain.
Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Multimodal sentiment analysis is a very actively growing field of research. A promising area of opportunity in this field is to improve the multimodal fusion mechanism. We present a novel feature fusion strategy that proceeds in a hierarchical fashion, first fusing the modalities two in two and only then fusing all three modalities. On multimodal sentiment analysis of individual utterances, our strategy outperforms conventional concatenation of features by 1%, which amounts to 5% reduction in error rate. On utterance-level multimodal sentiment analysis of multi-utterance video clips, for which current state-of-the-art techniques incorporate contextual information from other utterances of the same clip, our hierarchical fusion gives up to 2.4% (almost 10% error rate reduction) over currently used concatenation. The implementation of our method is publicly available in the form of open-source code.