亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recommender systems (RSs) have become an essential tool for mitigating information overload in a range of real-world applications. Recent trends in RSs have revealed a major paradigm shift, moving the spotlight from model-centric innovations to data-centric efforts (e.g., improving data quality and quantity). This evolution has given rise to the concept of data-centric recommender systems (Data-Centric RSs), marking a significant development in the field. This survey provides the first systematic overview of Data-Centric RSs, covering 1) the foundational concepts of recommendation data and Data-Centric RSs; 2) three primary issues of recommendation data; 3) recent research developed to address these issues; and 4) several potential future directions of Data-Centric RSs.

相關內容

 RSS(簡易信息聚合,也叫聚合內容)是一種描述和同步網站內容的格式。RSS可以是以下三個解釋的其中一個: Really Simple Syndication;RDF (Resource Description Framework) Site Summary; Rich Site Summary。但其實這三個解釋都是指同一種Syndication的技術。

Generating safe behaviors for autonomous systems is important as they continue to be deployed in the real world, especially around people. In this work, we focus on developing a novel safe controller for systems where there are multiple sources of uncertainty. We formulate a novel multimodal safe control method, called the Multimodal Safe Set Algorithm (MMSSA) for the case where the agent has uncertainty over which discrete mode the system is in, and each mode itself contains additional uncertainty. To our knowledge, this is the first energy-function-based safe control method applied to systems with multimodal uncertainty. We apply our controller to a simulated human-robot interaction where the robot is uncertain of the human's true intention and each potential intention has its own additional uncertainty associated with it, since the human is not a perfectly rational actor. We compare our proposed safe controller to existing safe control methods and find that it does not impede the system performance (i.e. efficiency) while also improving the safety of the system.

In the rapidly evolving landscape of artificial intelligence, multimodal learning systems (MMLS) have gained traction for their ability to process and integrate information from diverse modality inputs. Their expanding use in vital sectors such as healthcare has made safety assurance a critical concern. However, the absence of systematic research into their safety is a significant barrier to progress in this field. To bridge the gap, we present the first taxonomy that systematically categorizes and assesses MMLS safety. This taxonomy is structured around four fundamental pillars that are critical to ensuring the safety of MMLS: robustness, alignment, monitoring, and controllability. Leveraging this taxonomy, we review existing methodologies, benchmarks, and the current state of research, while also pinpointing the principal limitations and gaps in knowledge. Finally, we discuss unique challenges in MMLS safety. In illuminating these challenges, we aim to pave the way for future research, proposing potential directions that could lead to significant advancements in the safety protocols of MMLS.

A near-field wideband communication system is investigated in which a base station (BS) employs an extra-large scale antenna array (ELAA) to serve multiple users in its near-field region. To facilitate near-field multi-user beamforming and mitigate the spatial wideband effect, the BS employs a hybrid beamforming architecture based on true-time delayers (TTDs). In addition to the conventional fully-connected TTD-based hybrid beamforming architecture, a new sub-connected architecture is proposed to improve energy efficiency and reduce hardware requirements. Two wideband beamforming optimization approaches are proposed to maximize spectral efficiency for both architectures. 1) Fully-digital approximation (FDA) approach: In this method, the TTD-based hybrid beamformer is optimized by the block-coordinate descent and penalty method to approximate the optimal digital beamformer. This approach ensures convergence to the stationary point of the spectral efficiency maximization problem. 2) Heuristic two-stage (HTS) approach: In this approach, the analog and digital beamformers are designed in two stages. In particular, two low-complexity methods are proposed to design the high-dimensional analog beamformers based on approximate and exact line-of-sight channels, respectively. Subsequently, the low-dimensional digital beamformer is optimized based on the low-dimensional equivalent channels, resulting in reduced computational complexity and channel estimation complexity. Our numerical results show that 1) the proposed approach effectively eliminates the spatial wideband effect, and 2) the proposed sub-connected architecture is more energy efficient and has fewer hardware constraints on the TTD and system bandwidth compared to the fully-connected architecture.

Physical layer security (PLS) is a promising technology to secure wireless communications by exploiting the physical properties of the wireless channel. However, the passive nature of PLS creates a significant imbalance between the effort required by eavesdroppers and legitimate users to secure data. To address this imbalance, in this article, we propose a novel framework of physical layer deception (PLD), which combines PLS with deception technologies to actively counteract wiretapping attempts. Combining a two-stage encoder with randomized ciphering and non-orthogonal multiplexing, the PLD approach enables the wireless communication system to proactively counter eavesdroppers with deceptive messages. Relying solely on the superiority of the legitimate channel over the eavesdropping channel, the PLD framework can effectively protect the confidentiality of the transmitted messages, even against eavesdroppers who possess knowledge equivalent to that of the legitimate receiver. We prove the validity of the PLD framework with in-depth analyses and demonstrate its superiority over conventional PLS approaches with comprehensive numerical benchmarks.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司