Intelligent agents use internal world models to reason and make predictions about different courses of their actions at many scales. Devising learning paradigms and architectures that allow machines to learn world models that operate at multiple levels of temporal abstractions while dealing with complex uncertainty predictions is a major technical hurdle. In this work, we propose a probabilistic formalism to learn multi-time scale world models which we call the Multi Time Scale State Space (MTS3) model. Our model uses a computationally efficient inference scheme on multiple time scales for highly accurate long-horizon predictions and uncertainty estimates over several seconds into the future. Our experiments, which focus on action conditional long horizon future predictions, show that MTS3 outperforms recent methods on several system identification benchmarks including complex simulated and real-world dynamical systems. Code is available at this repository: //github.com/ALRhub/MTS3.
Federated Learning (FL) allows several clients to construct a common global machine-learning model without having to share their data. FL, however, faces the challenge of statistical heterogeneity between the client's data, which degrades performance and slows down the convergence toward the global model. In this paper, we provide theoretical proof that minimizing heterogeneity between clients facilitates the convergence of a global model for every single client. This becomes particularly important under empirical concept shifts among clients, rather than merely considering imbalanced classes, which have been studied until now. Therefore, we propose a method for knowledge transfer between clients where the server trains client-specific generators. Each generator generates samples for the corresponding client to remove the conflict with other clients' models. Experiments conducted on synthetic and real data, along with a theoretical study, support the effectiveness of our method in constructing a well-generalizable global model by reducing the conflict between local models.
This paper studies stochastic control problems with the action space taken to be probability measures, with the objective penalised by the relative entropy. We identify suitable metric space on which we construct a gradient flow for the measure-valued control process, in the set of admissible controls, along which the cost functional is guaranteed to decrease. It is shown that any invariant measure of this gradient flow satisfies the Pontryagin optimality principle. If the problem we work with is sufficiently convex, the gradient flow converges exponentially fast. Furthermore, the optimal measure-valued control process admits a Bayesian interpretation which means that one can incorporate prior knowledge when solving such stochastic control problems. This work is motivated by a desire to extend the theoretical underpinning for the convergence of stochastic gradient type algorithms widely employed in the reinforcement learning community to solve control problems.
We investigate the role of the initial screening order (ISO) in candidate screening processes, such as hiring and academic admissions. ISO refers to the order in which the screener sorts the candidate pool before the evaluation. It has been largely overlooked in the literature, despite its potential impact on the optimality and fairness of the chosen set, especially under a human screener. We define two problem formulations: best-$k$, where the screener chooses the $k$ best candidates, and good-$k$, where the screener chooses the first $k$ good-enough candidates. To study the impact of ISO, we introduce a human-like screener and compare to its algorithmic counterpart. The human-like screener is conceived to be inconsistent over time due to fatigue. Our analysis shows that the ISO under a human-like screener hinders individual fairness despite meeting group level fairness. This is due to the position bias, where a candidate's evaluation is affected by its position within ISO. We report extensive simulated experiments exploring the parameters of the problem formulations both for algorithmic and human-like screeners. This work is motivated by a real world candidate screening problem studied in collaboration with a large European company.
Improving the alignment of language models with human preferences remains an active research challenge. Previous approaches have primarily utilized Reinforcement Learning from Human Feedback (RLHF) via online RL methods such as Proximal Policy Optimization (PPO). Recently, offline methods such as Sequence Likelihood Calibration (SLiC) and Direct Preference Optimization (DPO) have emerged as attractive alternatives, offering improvements in stability and scalability while maintaining competitive performance. SLiC refines its loss function using sequence pairs sampled from a supervised fine-tuned (SFT) policy, while DPO directly optimizes language models based on preference data, foregoing the need for a separate reward model. However, the maximum likelihood estimator (MLE) of the target optimal policy requires labeled preference pairs sampled from that policy. DPO's lack of a reward model constrains its ability to sample preference pairs from the optimal policy, and SLiC is restricted to sampling preference pairs only from the SFT policy. To address these limitations, we introduce a novel approach called Statistical Rejection Sampling Optimization (RSO) that aims to source preference data from the target optimal policy using rejection sampling, enabling a more accurate estimation of the optimal policy. We also propose a unified framework that enhances the loss functions used in both SLiC and DPO from a preference modeling standpoint. Through extensive experiments across three diverse tasks, we demonstrate that RSO consistently outperforms both SLiC and DPO on evaluations from both Large Language Model (LLM) and human raters.
Latent representations are used extensively for downstream tasks, such as visualization, interpolation or feature extraction of deep learning models. Invariant and equivariant neural networks are powerful and well-established models for enforcing inductive biases. In this paper, we demonstrate that the inductive bias imposed on the by an equivariant model must also be taken into account when using latent representations. We show how not accounting for the inductive biases leads to decreased performance on downstream tasks, and vice versa, how accounting for inductive biases can be done effectively by using an invariant projection of the latent representations. We propose principles for how to choose such a projection, and show the impact of using these principles in two common examples: First, we study a permutation equivariant variational auto-encoder trained for molecule graph generation; here we show that invariant projections can be designed that incur no loss of information in the resulting invariant representation. Next, we study a rotation-equivariant representation used for image classification. Here, we illustrate how random invariant projections can be used to obtain an invariant representation with a high degree of retained information. In both cases, the analysis of invariant latent representations proves superior to their equivariant counterparts. Finally, we illustrate that the phenomena documented here for equivariant neural networks have counterparts in standard neural networks where invariance is encouraged via augmentation. Thus, while these ambiguities may be known by experienced developers of equivariant models, we make both the knowledge as well as effective tools to handle the ambiguities available to the broader community.
Public opinion surveys are vital for informing democratic decision-making, but responding to rapidly changing information environments and measuring beliefs within niche communities can be challenging for traditional survey methods. This paper introduces a crowdsourced adaptive survey methodology (CSAS) that unites advances in natural language processing and adaptive algorithms to generate question banks that evolve with user input. The CSAS method converts open-ended text provided by participants into Likert-style items and applies a multi-armed bandit algorithm to determine user-provided questions that should be prioritized in the survey. The method's adaptive nature allows for the exploration of new survey questions, while imposing minimal costs in survey length. Applications in the domains of Latino information environments and issue importance showcase CSAS's ability to identify claims or issues that might otherwise be difficult to track using standard approaches. I conclude by discussing the method's potential for studying topics where participant-generated content might improve our understanding of public opinion.
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.
Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.
Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.