亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automatic Essay Scoring (AES) is a well-established educational pursuit that employs machine learning to evaluate student-authored essays. While much effort has been made in this area, current research primarily focuses on either (i) boosting the predictive accuracy of an AES model for a specific prompt (i.e., developing prompt-specific models), which often heavily relies on the use of the labeled data from the same target prompt; or (ii) assessing the applicability of AES models developed on non-target prompts to the intended target prompt (i.e., developing the AES models in a cross-prompt setting). Given the inherent bias in machine learning and its potential impact on marginalized groups, it is imperative to investigate whether such bias exists in current AES methods and, if identified, how it intervenes with an AES model's accuracy and generalizability. Thus, our study aimed to uncover the intricate relationship between an AES model's accuracy, fairness, and generalizability, contributing practical insights for developing effective AES models in real-world education. To this end, we meticulously selected nine prominent AES methods and evaluated their performance using seven metrics on an open-sourced dataset, which contains over 25,000 essays and various demographic information about students such as gender, English language learner status, and economic status. Through extensive evaluations, we demonstrated that: (1) prompt-specific models tend to outperform their cross-prompt counterparts in terms of predictive accuracy; (2) prompt-specific models frequently exhibit a greater bias towards students of different economic statuses compared to cross-prompt models; (3) in the pursuit of generalizability, traditional machine learning models coupled with carefully engineered features hold greater potential for achieving both high accuracy and fairness than complex neural network models.

相關內容

機器學習系統設計系統評估標準

Quality Assurance (QA) aims to prevent mistakes and defects in manufactured products and avoid problems when delivering products or services to customers. QA for AI systems, however, poses particular challenges, given their data-driven and non-deterministic nature as well as more complex architectures and algorithms. While there is growing empirical evidence about practices of machine learning in industrial contexts, little is known about the challenges and best practices of quality assurance for AI systems (QA4AI). In this paper, we report on a mixed-method study of QA4AI in industry practice from various countries and companies. Through interviews with fifteen industry practitioners and a validation survey with 50 practitioner responses, we studied the concerns as well as challenges and best practices in ensuring the QA4AI properties reported in the literature, such as correctness, fairness, interpretability and others. Our findings suggest correctness as the most important property, followed by model relevance, efficiency and deployability. In contrast, transferability (applying knowledge learned in one task to another task), security and fairness are not paid much attention by practitioners compared to other properties. Challenges and solutions are identified for each QA4AI property. For example, interviewees highlighted the trade-off challenge among latency, cost and accuracy for efficiency (latency and cost are parts of efficiency concern). Solutions like model compression are proposed. We identified 21 QA4AI practices across each stage of AI development, with 10 practices being well recognized and another 8 practices being marginally agreed by the survey practitioners.

Recent studies have uncovered intriguing phenomena in deep learning, such as grokking, double descent, and emergent abilities in large language models, which challenge human intuition and are crucial for a deeper understanding of neural models. In this paper, we present a comprehensive framework that provides a unified view of these three phenomena, focusing on the competition between memorization and generalization circuits. This approach, initially employed to explain grokking, is extended in our work to encompass a wider range of model sizes and training data volumes. Our framework delineates four distinct training dynamics, each depending on varying combinations of model size and training data quantity. Utilizing this framework, we provide a detailed analysis of the double descent phenomenon and propose two verifiable predictions regarding its occurrence, both substantiated by our experimental results. Moreover, we expand our framework to the multi-task learning paradigm, demonstrating how algorithm tasks can be turned into emergent abilities. This offers a novel perspective to understand emergent abilities in Large Language Models.

Aspect Sentiment Triple Extraction (ASTE) is an emerging task in fine-grained sentiment analysis. Recent studies have employed Graph Neural Networks (GNN) to model the syntax-semantic relationships inherent in triplet elements. However, they have yet to fully tap into the vast potential of syntactic and semantic information within the ASTE task. In this work, we propose a \emph{Dual Encoder: Exploiting the potential of Syntactic and Semantic} model (D2E2S), which maximizes the syntactic and semantic relationships among words. Specifically, our model utilizes a dual-channel encoder with a BERT channel to capture semantic information, and an enhanced LSTM channel for comprehensive syntactic information capture. Subsequently, we introduce the heterogeneous feature interaction module to capture intricate interactions between dependency syntax and attention semantics, and to dynamically select vital nodes. We leverage the synergy of these modules to harness the significant potential of syntactic and semantic information in ASTE tasks. Testing on public benchmarks, our D2E2S model surpasses the current state-of-the-art(SOTA), demonstrating its effectiveness.

Cognitive Diagnosis Models (CDMs) provide a powerful statistical and psychometric tool for researchers and practitioners to learn fine-grained diagnostic information about respondents' latent attributes. There has been a growing interest in the use of CDMs for polytomous response data, as more and more items with multiple response options become widely used. Similar to many latent variable models, the identifiability of CDMs is critical for accurate parameter estimation and valid statistical inference. However, the existing identifiability results are primarily focused on binary response models and have not adequately addressed the identifiability of CDMs with polytomous responses. This paper addresses this gap by presenting sufficient and necessary conditions for the identifiability of the widely used DINA model with polytomous responses, with the aim to provide a comprehensive understanding of the identifiability of CDMs with polytomous responses and to inform future research in this field.

Thanks to advances in deep learning techniques, Human Pose Estimation (HPE) has achieved significant progress in natural scenarios. However, these models perform poorly in artificial scenarios such as painting and sculpture due to the domain gap, constraining the development of virtual reality and augmented reality. With the growth of model size, retraining the whole model on both natural and artificial data is computationally expensive and inefficient. Our research aims to bridge the domain gap between natural and artificial scenarios with efficient tuning strategies. Leveraging the potential of language models, we enhance the adaptability of traditional pose estimation models across diverse scenarios with a novel framework called VLPose. VLPose leverages the synergy between language and vision to extend the generalization and robustness of pose estimation models beyond the traditional domains. Our approach has demonstrated improvements of 2.26% and 3.74% on HumanArt and MSCOCO, respectively, compared to state-of-the-art tuning strategies.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.

北京阿比特科技有限公司