The process of painting fosters creativity and rational planning. However, existing generative AI mostly focuses on producing visually pleasant artworks, without emphasizing the painting process. We introduce a novel task, Collaborative Neural Painting (CNP), to facilitate collaborative art painting generation between humans and machines. Given any number of user-input brushstrokes as the context or just the desired object class, CNP should produce a sequence of strokes supporting the completion of a coherent painting. Importantly, the process can be gradual and iterative, so allowing users' modifications at any phase until the completion. Moreover, we propose to solve this task using a painting representation based on a sequence of parametrized strokes, which makes it easy both editing and composition operations. These parametrized strokes are processed by a Transformer-based architecture with a novel attention mechanism to model the relationship between the input strokes and the strokes to complete. We also propose a new masking scheme to reflect the interactive nature of CNP and adopt diffusion models as the basic learning process for its effectiveness and diversity in the generative field. Finally, to develop and validate methods on the novel task, we introduce a new dataset of painted objects and an evaluation protocol to benchmark CNP both quantitatively and qualitatively. We demonstrate the effectiveness of our approach and the potential of the CNP task as a promising avenue for future research.
The extraction of modular object-centric representations for downstream tasks is an emerging area of research. Learning grounded representations of objects that are guaranteed to be stable and invariant promises robust performance across different tasks and environments. Slot Attention (SA) learns object-centric representations by assigning objects to \textit{slots}, but presupposes a \textit{single} distribution from which all slots are randomly initialised. This results in an inability to learn \textit{specialized} slots which bind to specific object types and remain invariant to identity-preserving changes in object appearance. To address this, we present \emph{\textsc{Co}nditional \textsc{S}lot \textsc{A}ttention} (\textsc{CoSA}) using a novel concept of \emph{Grounded Slot Dictionary} (GSD) inspired by vector quantization. Our proposed GSD comprises (i) canonical object-level property vectors and (ii) parametric Gaussian distributions, which define a prior over the slots. We demonstrate the benefits of our method in multiple downstream tasks such as scene generation, composition, and task adaptation, whilst remaining competitive with SA in popular object discovery benchmarks.
We investigate the role of the initial screening order (ISO) in candidate screening processes, such as hiring and academic admissions. ISO refers to the order in which the screener sorts the candidate pool before the evaluation. It has been largely overlooked in the literature, despite its potential impact on the optimality and fairness of the chosen set, especially under a human screener. We define two problem formulations: best-$k$, where the screener chooses the $k$ best candidates, and good-$k$, where the screener chooses the first $k$ good-enough candidates. To study the impact of ISO, we introduce a human-like screener and compare to its algorithmic counterpart. The human-like screener is conceived to be inconsistent over time due to fatigue. Our analysis shows that the ISO under a human-like screener hinders individual fairness despite meeting group level fairness. This is due to the position bias, where a candidate's evaluation is affected by its position within ISO. We report extensive simulated experiments exploring the parameters of the problem formulations both for algorithmic and human-like screeners. This work is motivated by a real world candidate screening problem studied in collaboration with a large European company.
Inverse problems aim to determine parameters from observations, a crucial task in engineering and science. Lately, generative models, especially diffusion models, have gained popularity in this area for their ability to produce realistic solutions and their good mathematical properties. Despite their success, an important drawback of diffusion models is their sensitivity to the choice of variance schedule, which controls the dynamics of the diffusion process. Fine-tuning this schedule for specific applications is crucial but time-costly and does not guarantee an optimal result. We propose a novel approach for learning the schedule as part of the training process. Our method supports probabilistic conditioning on data, provides high-quality solutions, and is flexible, proving able to adapt to different applications with minimum overhead. This approach is tested in two unrelated inverse problems: super-resolution microscopy and quantitative phase imaging, yielding comparable or superior results to previous methods and fine-tuned diffusion models. We conclude that fine-tuning the schedule by experimentation should be avoided because it can be learned during training in a stable way that yields better results.
Latent representations are used extensively for downstream tasks, such as visualization, interpolation or feature extraction of deep learning models. Invariant and equivariant neural networks are powerful and well-established models for enforcing inductive biases. In this paper, we demonstrate that the inductive bias imposed on the by an equivariant model must also be taken into account when using latent representations. We show how not accounting for the inductive biases leads to decreased performance on downstream tasks, and vice versa, how accounting for inductive biases can be done effectively by using an invariant projection of the latent representations. We propose principles for how to choose such a projection, and show the impact of using these principles in two common examples: First, we study a permutation equivariant variational auto-encoder trained for molecule graph generation; here we show that invariant projections can be designed that incur no loss of information in the resulting invariant representation. Next, we study a rotation-equivariant representation used for image classification. Here, we illustrate how random invariant projections can be used to obtain an invariant representation with a high degree of retained information. In both cases, the analysis of invariant latent representations proves superior to their equivariant counterparts. Finally, we illustrate that the phenomena documented here for equivariant neural networks have counterparts in standard neural networks where invariance is encouraged via augmentation. Thus, while these ambiguities may be known by experienced developers of equivariant models, we make both the knowledge as well as effective tools to handle the ambiguities available to the broader community.
This paper proposes regenerative particle Thompson sampling (RPTS), a flexible variation of Thompson sampling. Thompson sampling itself is a Bayesian heuristic for solving stochastic bandit problems, but it is hard to implement in practice due to the intractability of maintaining a continuous posterior distribution. Particle Thompson sampling (PTS) is an approximation of Thompson sampling obtained by simply replacing the continuous distribution by a discrete distribution supported at a set of weighted static particles. We observe that in PTS, the weights of all but a few fit particles converge to zero. RPTS is based on the heuristic: delete the decaying unfit particles and regenerate new particles in the vicinity of fit surviving particles. Empirical evidence shows uniform improvement from PTS to RPTS and flexibility and efficacy of RPTS across a set of representative bandit problems, including an application to 5G network slicing.
Existing Collaborative Filtering (CF) methods are mostly designed based on the idea of matching, i.e., by learning user and item embeddings from data using shallow or deep models, they try to capture the associative relevance patterns in data, so that a user embedding can be matched with relevant item embeddings using designed or learned similarity functions. However, as a cognition rather than a perception intelligent task, recommendation requires not only the ability of pattern recognition and matching from data, but also the ability of cognitive reasoning in data. In this paper, we propose to advance Collaborative Filtering (CF) to Collaborative Reasoning (CR), which means that each user knows part of the reasoning space, and they collaborate for reasoning in the space to estimate preferences for each other. Technically, we propose a Neural Collaborative Reasoning (NCR) framework to bridge learning and reasoning. Specifically, we integrate the power of representation learning and logical reasoning, where representations capture similarity patterns in data from perceptual perspectives, and logic facilitates cognitive reasoning for informed decision making. An important challenge, however, is to bridge differentiable neural networks and symbolic reasoning in a shared architecture for optimization and inference. To solve the problem, we propose a modularized reasoning architecture, which learns logical operations such as AND ($\wedge$), OR ($\vee$) and NOT ($\neg$) as neural modules for implication reasoning ($\rightarrow$). In this way, logical expressions can be equivalently organized as neural networks, so that logical reasoning and prediction can be conducted in a continuous space. Experiments on real-world datasets verified the advantages of our framework compared with both shallow, deep and reasoning models.
Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.
Geometry and shape are fundamental aspects of visual style. Existing style transfer methods focus on texture-like components of style, ignoring geometry. We propose deformable style transfer (DST), an optimization-based approach that integrates texture and geometry style transfer. Our method is the first to allow geometry-aware stylization not restricted to any domain and not requiring training sets of matching style/content pairs. We demonstrate our method on a diverse set of content and style images including portraits, animals, objects, scenes, and paintings.
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan