Image alignment and image restoration are classical computer vision tasks. However, there is still a lack of datasets that provide enough data to train and evaluate end-to-end deep learning models. Obtaining ground-truth data for image alignment requires sophisticated structure-from-motion methods or optical flow systems that often do not provide enough data variance, i.e., typically providing a high number of image correspondences, while only introducing few changes of scenery within the underlying image sequences. Alternative approaches utilize random perspective distortions on existing image data. However, this only provides trivial distortions, lacking the complexity and variance of real-world scenarios. Instead, our proposed data augmentation helps to overcome the issue of data scarcity by using 3D rendering: images are added as textures onto a plane, then varying lighting conditions, shadows, and occlusions are added to the scene. The scene is rendered from multiple viewpoints, generating perspective distortions more consistent with real-world scenarios, with homographies closely resembling those of camera projections rather than randomized homographies. For each scene, we provide a sequence of distorted images with corresponding occlusion masks, homographies, and ground-truth labels. The resulting dataset can serve as a training and evaluation set for a multitude of tasks involving image alignment and artifact removal, such as deep homography estimation, dense image matching, 2D bundle adjustment, inpainting, shadow removal, denoising, content retrieval, and background subtraction. Our data generation pipeline is customizable and can be applied to any existing dataset, serving as a data augmentation to further improve the feature learning of any existing method.
Encoder-decoder deep neural networks have been increasingly studied for multi-horizon time series forecasting, especially in real-world applications. However, to forecast accurately, these sophisticated models typically rely on a large number of time series examples with substantial history. A rapidly growing topic of interest is forecasting time series which lack sufficient historical data -- often referred to as the ``cold start'' problem. In this paper, we introduce a novel yet simple method to address this problem by leveraging graph neural networks (GNNs) as a data augmentation for enhancing the encoder used by such forecasters. These GNN-based features can capture complex inter-series relationships, and their generation process can be optimized end-to-end with the forecasting task. We show that our architecture can use either data-driven or domain knowledge-defined graphs, scaling to incorporate information from multiple very large graphs with millions of nodes. In our target application of demand forecasting for a large e-commerce retailer, we demonstrate on both a small dataset of 100K products and a large dataset with over 2 million products that our method improves overall performance over competitive baseline models. More importantly, we show that it brings substantially more gains to ``cold start'' products such as those newly launched or recently out-of-stock.
For any two point sets $A,B \subset \mathbb{R}^d$ of size up to $n$, the Chamfer distance from $A$ to $B$ is defined as $\text{CH}(A,B)=\sum_{a \in A} \min_{b \in B} d_X(a,b)$, where $d_X$ is the underlying distance measure (e.g., the Euclidean or Manhattan distance). The Chamfer distance is a popular measure of dissimilarity between point clouds, used in many machine learning, computer vision, and graphics applications, and admits a straightforward $O(d n^2)$-time brute force algorithm. Further, the Chamfer distance is often used as a proxy for the more computationally demanding Earth-Mover (Optimal Transport) Distance. However, the \emph{quadratic} dependence on $n$ in the running time makes the naive approach intractable for large datasets. We overcome this bottleneck and present the first $(1+\epsilon)$-approximate algorithm for estimating the Chamfer distance with a near-linear running time. Specifically, our algorithm runs in time $O(nd \log (n)/\varepsilon^2)$ and is implementable. Our experiments demonstrate that it is both accurate and fast on large high-dimensional datasets. We believe that our algorithm will open new avenues for analyzing large high-dimensional point clouds. We also give evidence that if the goal is to \emph{report} a $(1+\varepsilon)$-approximate mapping from $A$ to $B$ (as opposed to just its value), then any sub-quadratic time algorithm is unlikely to exist.
One challenge in text-to-image (T2I) generation is the inadvertent reflection of culture gaps present in the training data, which signifies the disparity in generated image quality when the cultural elements of the input text are rarely collected in the training set. Although various T2I models have shown impressive but arbitrary examples, there is no benchmark to systematically evaluate a T2I model's ability to generate cross-cultural images. To bridge the gap, we propose a Challenging Cross-Cultural (C3) benchmark with comprehensive evaluation criteria, which can assess how well-suited a model is to a target culture. By analyzing the flawed images generated by the Stable Diffusion model on the C3 benchmark, we find that the model often fails to generate certain cultural objects. Accordingly, we propose a novel multi-modal metric that considers object-text alignment to filter the fine-tuning data in the target culture, which is used to fine-tune a T2I model to improve cross-cultural generation. Experimental results show that our multi-modal metric provides stronger data selection performance on the C3 benchmark than existing metrics, in which the object-text alignment is crucial. We release the benchmark, data, code, and generated images to facilitate future research on culturally diverse T2I generation (//github.com/longyuewangdcu/C3-Bench).
With recent advancements in diffusion models, users can generate high-quality images by writing text prompts in natural language. However, generating images with desired details requires proper prompts, and it is often unclear how a model reacts to different prompts or what the best prompts are. To help researchers tackle these critical challenges, we introduce DiffusionDB, the first large-scale text-to-image prompt dataset totaling 6.5TB, containing 14 million images generated by Stable Diffusion, 1.8 million unique prompts, and hyperparameters specified by real users. We analyze the syntactic and semantic characteristics of prompts. We pinpoint specific hyperparameter values and prompt styles that can lead to model errors and present evidence of potentially harmful model usage, such as the generation of misinformation. The unprecedented scale and diversity of this human-actuated dataset provide exciting research opportunities in understanding the interplay between prompts and generative models, detecting deepfakes, and designing human-AI interaction tools to help users more easily use these models. DiffusionDB is publicly available at: //poloclub.github.io/diffusiondb.
While natural language offers a convenient shared interface for humans and robots, enabling robots to interpret and follow language commands remains a longstanding challenge in manipulation. A crucial step to realizing a performant instruction-following robot is achieving semantic manipulation, where a robot interprets language at different specificities, from high-level instructions like "Pick up the stuffed animal" to more detailed inputs like "Grab the left ear of the elephant." To tackle this, we propose Keypoints + Instructions to Execution (KITE), a two-step framework for semantic manipulation which attends to both scene semantics (distinguishing between different objects in a visual scene) and object semantics (precisely localizing different parts within an object instance). KITE first grounds an input instruction in a visual scene through 2D image keypoints, providing a highly accurate object-centric bias for downstream action inference. Provided an RGB-D scene observation, KITE then executes a learned keypoint-conditioned skill to carry out the instruction. The combined precision of keypoints and parameterized skills enables fine-grained manipulation with generalization to scene and object variations. Empirically, we demonstrate KITE in 3 real-world environments: long-horizon 6-DoF tabletop manipulation, semantic grasping, and a high-precision coffee-making task. In these settings, KITE achieves a 75%, 70%, and 71% overall success rate for instruction-following, respectively. KITE outperforms frameworks that opt for pre-trained visual language models over keypoint-based grounding, or omit skills in favor of end-to-end visuomotor control, all while being trained from fewer or comparable amounts of demonstrations. Supplementary material, datasets, code, and videos can be found on our website: //tinyurl.com/kite-site.
Although unsupervised domain adaptation (UDA) is a promising direction to alleviate domain shift, they fall short of their supervised counterparts. In this work, we investigate relatively less explored semi-supervised domain adaptation (SSDA) for medical image segmentation, where access to a few labeled target samples can improve the adaptation performance substantially. Specifically, we propose a two-stage training process. First, an encoder is pre-trained in a self-learning paradigm using a novel domain-content disentangled contrastive learning (CL) along with a pixel-level feature consistency constraint. The proposed CL enforces the encoder to learn discriminative content-specific but domain-invariant semantics on a global scale from the source and target images, whereas consistency regularization enforces the mining of local pixel-level information by maintaining spatial sensitivity. This pre-trained encoder, along with a decoder, is further fine-tuned for the downstream task, (i.e. pixel-level segmentation) using a semi-supervised setting. Furthermore, we experimentally validate that our proposed method can easily be extended for UDA settings, adding to the superiority of the proposed strategy. Upon evaluation on two domain adaptive image segmentation tasks, our proposed method outperforms the SoTA methods, both in SSDA and UDA settings. Code is available at //github.com/hritam-98/GFDA-disentangled
Nowadays, there is a wide availability of datasets that enable the training of common object detectors or human detectors. These come in the form of labelled real-world images and require either a significant amount of human effort, with a high probability of errors such as missing labels, or very constrained scenarios, e.g. VICON systems. On the other hand, uncommon scenarios, like aerial views, animals, like wild zebras, or difficult-to-obtain information, such as human shapes, are hardly available. To overcome this, synthetic data generation with realistic rendering technologies has recently gained traction and advanced research areas such as target tracking and human pose estimation. However, subjects such as wild animals are still usually not well represented in such datasets. In this work, we first show that a pre-trained YOLO detector can not identify zebras in real images recorded from aerial viewpoints. To solve this, we present an approach for training an animal detector using only synthetic data. We start by generating a novel synthetic zebra dataset using GRADE, a state-of-the-art framework for data generation. The dataset includes RGB, depth, skeletal joint locations, pose, shape and instance segmentations for each subject. We use this to train a YOLO detector from scratch. Through extensive evaluations of our model with real-world data from i) limited datasets available on the internet and ii) a new one collected and manually labelled by us, we show that we can detect zebras by using only synthetic data during training. The code, results, trained models, and both the generated and training data are provided as open-source at //eliabntt.github.io/grade-rr.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
The U-Net was presented in 2015. With its straight-forward and successful architecture it quickly evolved to a commonly used benchmark in medical image segmentation. The adaptation of the U-Net to novel problems, however, comprises several degrees of freedom regarding the exact architecture, preprocessing, training and inference. These choices are not independent of each other and substantially impact the overall performance. The present paper introduces the nnU-Net ('no-new-Net'), which refers to a robust and self-adapting framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case for taking away superfluous bells and whistles of many proposed network designs and instead focus on the remaining aspects that make out the performance and generalizability of a method. We evaluate the nnU-Net in the context of the Medical Segmentation Decathlon challenge, which measures segmentation performance in ten disciplines comprising distinct entities, image modalities, image geometries and dataset sizes, with no manual adjustments between datasets allowed. At the time of manuscript submission, nnU-Net achieves the highest mean dice scores across all classes and seven phase 1 tasks (except class 1 in BrainTumour) in the online leaderboard of the challenge.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.