亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove that to each real singularity $f: (\mathbb{R}^{n+1}, 0) \to (\mathbb{R}, 0)$ one can associate two systems of differential equations $\mathfrak{g}^{k\pm}_f$ which are pushforwards in the category of $\mathcal{D}$-modules over $\mathbb{R}^{\pm}$, of the sheaf of real analytic functions on the total space of the positive, respectively negative, Milnor fibration. We prove that for $k=0$ if $f$ is an isolated singularity then $\mathfrak{g}^{\pm}$ determines the the $n$-th homology groups of the positive, respectively negative, Milnor fibre. We then calculate $\mathfrak{g}^{+}$ for ordinary quadratic singularities and prove that under certain conditions on the choice of morsification, one recovers the top homology groups of the Milnor fibers of any isolated singularity $f$. As an application we construct a public-key encryption scheme based on morsification of singularities.

相關內容

This paper studies the commonly utilized windowed Anderson acceleration (AA) algorithm for fixed-point methods, $x^{(k+1)}=q(x^{(k)})$. It provides the first proof that when the operator $q$ is linear and symmetric the windowed AA, which uses a sliding window of prior iterates, improves the root-linear convergence factor over the fixed-point iterations. When $q$ is nonlinear, yet has a symmetric Jacobian at a fixed point, a slightly modified AA algorithm is proved to have an analogous root-linear convergence factor improvement over fixed-point iterations. Simulations verify our observations. Furthermore, experiments with different data models demonstrate AA is significantly superior to the standard fixed-point methods for Tyler's M-estimation.

Calculating the inverse of $k$-diagonal circulant matrices and cyclic banded matrices is a more challenging problem than calculating their determinants. Algorithms that directly involve or specify linear or quadratic complexity for the inverses of these two types of matrices are rare. This paper presents two fast algorithms that can compute the complexity of a $k$-diagonal circulant matrix within complexity $O(k^3 \log n+k^4)+kn$, and for $k$-diagonal cyclic banded matrices it is $O(k^3 n+k^5)+kn^2$. Since $k$ is generally much smaller than $n$, the cost of these two algorithms can be approximated as $kn$ and $kn^2$.

We give new data-dependent locality sensitive hashing schemes (LSH) for the Earth Mover's Distance ($\mathsf{EMD}$), and as a result, improve the best approximation for nearest neighbor search under $\mathsf{EMD}$ by a quadratic factor. Here, the metric $\mathsf{EMD}_s(\mathbb{R}^d,\ell_p)$ consists of sets of $s$ vectors in $\mathbb{R}^d$, and for any two sets $x,y$ of $s$ vectors the distance $\mathsf{EMD}(x,y)$ is the minimum cost of a perfect matching between $x,y$, where the cost of matching two vectors is their $\ell_p$ distance. Previously, Andoni, Indyk, and Krauthgamer gave a (data-independent) locality-sensitive hashing scheme for $\mathsf{EMD}_s(\mathbb{R}^d,\ell_p)$ when $p \in [1,2]$ with approximation $O(\log^2 s)$. By being data-dependent, we improve the approximation to $\tilde{O}(\log s)$. Our main technical contribution is to show that for any distribution $\mu$ supported on the metric $\mathsf{EMD}_s(\mathbb{R}^d, \ell_p)$, there exists a data-dependent LSH for dense regions of $\mu$ which achieves approximation $\tilde{O}(\log s)$, and that the data-independent LSH actually achieves a $\tilde{O}(\log s)$-approximation outside of those dense regions. Finally, we show how to "glue" together these two hashing schemes without any additional loss in the approximation. Beyond nearest neighbor search, our data-dependent LSH also gives optimal (distributional) sketches for the Earth Mover's Distance. By known sketching lower bounds, this implies that our LSH is optimal (up to $\mathrm{poly}(\log \log s)$ factors) among those that collide close points with constant probability.

Let $\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set of $n$ points inside $\mathcal{P}$. We prove that there exists, for any $\varepsilon>0$, a set $\mathcal{C} \subset P$ of size $O(1/\varepsilon^2)$ such that the following holds: for any query point $q$ inside the polygon $\mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in $\mathcal{C}$ is at least $1-\varepsilon$ times the geodesic distance to its further neighbor in $P$. Thus the set $\mathcal{C}$ can be used for answering $\varepsilon$-approximate furthest-neighbor queries with a data structure whose storage requirement is independent of the size of $P$. The coreset can be constructed in $O\left(\frac{1}{\varepsilon} \left( n\log(1/\varepsilon) + (n+m)\log(n+m)\right) \right)$ time.

We consider the Distinct Shortest Walks problem. Given two vertices $s$ and $t$ of a graph database $\mathcal{D}$ and a regular path query, enumerate all walks of minimal length from $s$ to $t$ that carry a label that conforms to the query. Usual theoretical solutions turn out to be inefficient when applied to graph models that are closer to real-life systems, in particular because edges may carry multiple labels. Indeed, known algorithms may repeat the same answer exponentially many times. We propose an efficient algorithm for multi-labelled graph databases. The preprocessing runs in $O{|\mathcal{D}|\times|\mathcal{A}|}$ and the delay between two consecutive outputs is in $O(\lambda\times|\mathcal{A}|)$, where $\mathcal{A}$ is a nondeterministic automaton representing the query and $\lambda$ is the minimal length. The algorithm can handle $\varepsilon$-transitions in $\mathcal{A}$ or queries given as regular expressions at no additional cost.

We give an isomorphism test that runs in time $n^{\operatorname{polylog}(h)}$ on all $n$-vertex graphs excluding some $h$-vertex vertex graph as a topological subgraph. Previous results state that isomorphism for such graphs can be tested in time $n^{\operatorname{polylog}(n)}$ (Babai, STOC 2016) and $n^{f(h)}$ for some function $f$ (Grohe and Marx, SIAM J. Comp., 2015). Our result also unifies and extends previous isomorphism tests for graphs of maximum degree $d$ running in time $n^{\operatorname{polylog}(d)}$ (SIAM J. Comp., 2023) and for graphs of Hadwiger number $h$ running in time $n^{\operatorname{polylog}(h)}$ (SIAM J. Comp., 2023).

Consider a binary statistical hypothesis testing problem, where $n$ independent and identically distributed random variables $Z^n$ are either distributed according to the null hypothesis $P$ or the alternative hypothesis $Q$, and only $P$ is known. A well-known test that is suitable for this case is the so-called Hoeffding test, which accepts $P$ if the Kullback-Leibler (KL) divergence between the empirical distribution of $Z^n$ and $P$ is below some threshold. This work characterizes the first and second-order terms of the type-II error probability for a fixed type-I error probability for the Hoeffding test as well as for divergence tests, where the KL divergence is replaced by a general divergence. It is demonstrated that, irrespective of the divergence, divergence tests achieve the first-order term of the Neyman-Pearson test, which is the optimal test when both $P$ and $Q$ are known. In contrast, the second-order term of divergence tests is strictly worse than that of the Neyman-Pearson test. It is further demonstrated that divergence tests with an invariant divergence achieve the same second-order term as the Hoeffding test, but divergence tests with a non-invariant divergence may outperform the Hoeffding test for some alternative hypotheses $Q$. Potentially, this behavior could be exploited by a composite hypothesis test with partial knowledge of the alternative hypothesis $Q$ by tailoring the divergence of the divergence test to the set of possible alternative hypotheses.

The $(k, z)$-Clustering problem in Euclidean space $\mathbb{R}^d$ has been extensively studied. Given the scale of data involved, compression methods for the Euclidean $(k, z)$-Clustering problem, such as data compression and dimension reduction, have received significant attention in the literature. However, the space complexity of the clustering problem, specifically, the number of bits required to compress the cost function within a multiplicative error $\varepsilon$, remains unclear in existing literature. This paper initiates the study of space complexity for Euclidean $(k, z)$-Clustering and offers both upper and lower bounds. Our space bounds are nearly tight when $k$ is constant, indicating that storing a coreset, a well-known data compression approach, serves as the optimal compression scheme. Furthermore, our lower bound result for $(k, z)$-Clustering establishes a tight space bound of $\Theta( n d )$ for terminal embedding, where $n$ represents the dataset size. Our technical approach leverages new geometric insights for principal angles and discrepancy methods, which may hold independent interest.

We study the problem of maintaining a lightweight bounded-degree $(1+\varepsilon)$-spanner of a dynamic point set in a $d$-dimensional Euclidean space, where $\varepsilon>0$ and $d$ are arbitrary constants. In our fully-dynamic setting, points are allowed to be inserted as well as deleted, and our objective is to maintain a $(1+\varepsilon)$-spanner that has constant bounds on its maximum degree and its lightness (the ratio of its weight to that of the minimum spanning tree), while minimizing the recourse, which is the number of edges added or removed by each point insertion or deletion. We present a fully-dynamic algorithm that handles point insertion with amortized constant recourse and point deletion with amortized $O(\log\Delta)$ recourse, where $\Delta$ is the aspect ratio of the point set.

We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ sampled inputs $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

北京阿比特科技有限公司