亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid progress of modern computing systems has led to a growing interest in informative run-time logs. Various log-based anomaly detection techniques have been proposed to ensure software reliability. However, their implementation in the industry has been limited due to the lack of high-quality public log resources as training datasets. While some log datasets are available for anomaly detection, they suffer from limitations in (1) comprehensiveness of log events; (2) scalability over diverse systems; and (3) flexibility of log utility. To address these limitations, we propose AutoLog, the first automated log generation methodology for anomaly detection. AutoLog uses program analysis to generate run-time log sequences without actually running the system. AutoLog starts with probing comprehensive logging statements associated with the call graphs of an application. Then, it constructs execution graphs for each method after pruning the call graphs to find log-related execution paths in a scalable manner. Finally, AutoLog propagates the anomaly label to each acquired execution path based on human knowledge. It generates flexible log sequences by walking along the log execution paths with controllable parameters. Experiments on 50 popular Java projects show that AutoLog acquires significantly more (9x-58x) log events than existing log datasets from the same system, and generates log messages much faster (15x) with a single machine than existing passive data collection approaches. We hope AutoLog can facilitate the benchmarking and adoption of automated log analysis techniques.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Taking snapshots of the state of a distributed computation is useful for off-line analysis of the computational state, for later restarting from the saved snapshot, for cloning a copy of the computation, and for migration to a new cluster. The problem is made more difficult when supporting collective operations across processes, such as barrier, reduce operations, scatter and gather, etc. Some processes may have reached the barrier or other collective operation, while other processes wait a long time to reach that same barrier or collective operation. At least two solutions are well-known in the literature: (I) draining in-flight network messages and then freezing the network at checkpoint time; and (ii) adding a barrier prior to the collective operation, and either completing the operation or aborting the barrier if not all processes are present. Both solutions suffer important drawbacks. The code in the first solution must be updated whenever one ports to a newer network. The second solution implies additional barrier-related network traffic prior to each collective operation. This work presents a third solution that avoids both drawbacks. There is no additional barrier-related traffic, and the solution is implemented entirely above the network layer. The work is demonstrated in the context of transparent checkpointing of MPI libraries for parallel computation, where each of the first two solutions have already been used in prior systems, and then abandoned due to the aforementioned drawbacks. Experiments demonstrate the low runtime overhead of this new, network-agnostic approach. The approach is also extended to non-blocking, collective operations in order to handle overlapping of computation and communication.

Deep implicit functions (DIFs) have emerged as a powerful paradigm for many computer vision tasks such as 3D shape reconstruction, generation, registration, completion, editing, and understanding. However, given a set of 3D shapes with associated covariates there is at present no shape representation method which allows to precisely represent the shapes while capturing the individual dependencies on each covariate. Such a method would be of high utility to researchers to discover knowledge hidden in a population of shapes. For scientific shape discovery, we propose a 3D Neural Additive Model for Interpretable Shape Representation ($\texttt{NAISR}$) which describes individual shapes by deforming a shape atlas in accordance to the effect of disentangled covariates. Our approach captures shape population trends and allows for patient-specific predictions through shape transfer. $\texttt{NAISR}$ is the first approach to combine the benefits of deep implicit shape representations with an atlas deforming according to specified covariates. We evaluate $\texttt{NAISR}$ with respect to shape reconstruction, shape disentanglement, shape evolution, and shape transfer on three datasets: 1) $\textit{Starman}$, a simulated 2D shape dataset; 2) the ADNI hippocampus 3D shape dataset; and 3) a pediatric airway 3D shape dataset. Our experiments demonstrate that $\textit{Starman}$ achieves excellent shape reconstruction performance while retaining interpretability. Our code is available at $\href{//github.com/uncbiag/NAISR}{//github.com/uncbiag/NAISR}$.

Evaluating the readability of a text can significantly facilitate the precise expression of information in written form. The formulation of text readability assessment involves the identification of meaningful properties of the text regardless of its length. Sophisticated features and models are used to evaluate the comprehensibility of texts accurately. Despite this, the problem of assessing texts' readability efficiently remains relatively untouched. The efficiency of state-of-the-art text readability assessment models can be further improved using deep reinforcement learning models. Using a hard attention-based active inference technique, the proposed approach makes efficient use of input text and computational resources. Through the use of semi-supervised signals, the reinforcement learning model uses the minimum amount of text in order to determine text's readability. A comparison of the model on Weebit and Cambridge Exams with state-of-the-art models, such as the BERT text readability model, shows that it is capable of achieving state-of-the-art accuracy with a significantly smaller amount of input text than other models.

Deep learning techniques have led to remarkable breakthroughs in the field of generic object detection and have spawned a lot of scene-understanding tasks in recent years. Scene graph has been the focus of research because of its powerful semantic representation and applications to scene understanding. Scene Graph Generation (SGG) refers to the task of automatically mapping an image into a semantic structural scene graph, which requires the correct labeling of detected objects and their relationships. Although this is a challenging task, the community has proposed a lot of SGG approaches and achieved good results. In this paper, we provide a comprehensive survey of recent achievements in this field brought about by deep learning techniques. We review 138 representative works that cover different input modalities, and systematically summarize existing methods of image-based SGG from the perspective of feature extraction and fusion. We attempt to connect and systematize the existing visual relationship detection methods, to summarize, and interpret the mechanisms and the strategies of SGG in a comprehensive way. Finally, we finish this survey with deep discussions about current existing problems and future research directions. This survey will help readers to develop a better understanding of the current research status and ideas.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司