Multiclass neural network classifiers are typically trained using cross-entropy loss. Following training, the performance of this same neural network is evaluated using an application-specific metric based on the multiclass confusion matrix, such as the Macro $F_\beta$-Score. It is questionable whether the use of cross-entropy will yield a classifier that aligns with the intended application-specific performance criteria, particularly in scenarios where there is a need to emphasize one aspect of classifier performance. For example, if greater precision is preferred over recall, the $\beta$ value in the $F_\beta$ evaluation metric can be adjusted accordingly, but the cross-entropy objective remains unaware of this preference during training. We propose a method that addresses this training-evaluation gap for multiclass neural network classifiers such that users can train these models informed by the desired final $F_\beta$-Score. Following prior work in binary classification, we utilize the concepts of the soft-set confusion matrices and a piecewise-linear approximation of the Heaviside step function. Our method extends the $2 \times 2$ binary soft-set confusion matrix to a multiclass $d \times d$ confusion matrix and proposes dynamic adaptation of the threshold value $\tau$, which parameterizes the piecewise-linear Heaviside approximation during run-time. We present a theoretical analysis that shows that our method can be used to optimize for a soft-set based approximation of Macro-$F_\beta$ that is a consistent estimator of Macro-$F_\beta$, and our extensive experiments show the practical effectiveness of our approach.
Since training deep neural networks takes significant computational resources, extending the training dataset with new data is difficult, as it typically requires complete retraining. Moreover, specific applications do not allow costly retraining due to time or computational constraints. We address this issue by proposing a novel Bayesian update method for deep neural networks by using a last-layer Laplace approximation. Concretely, we leverage second-order optimization techniques on the Gaussian posterior distribution of a Laplace approximation, computing the inverse Hessian matrix in closed form. This way, our method allows for fast and effective updates upon the arrival of new data in a stationary setting. A large-scale evaluation study across different data modalities confirms that our updates are a fast and competitive alternative to costly retraining. Furthermore, we demonstrate its applicability in a deep active learning scenario by using our update to improve existing selection strategies.
Heterogeneous teams of Unmanned Aerial Vehicles (UAVs) can enhance the exploration capabilities of aerial robots by exploiting different strengths and abilities of varying UAVs. This paper presents a novel method for exploring unknown indoor spaces with a team of UAVs of different sizes and sensory equipment. We propose a frontier-based exploration with two task allocation strategies: a greedy strategy that assigns Points of Interest (POIs) based on Euclidean distance and UAV priority and an optimization strategy that solves a minimum-cost flow problem. The proposed method utilizes the SphereMap algorithm to assess the accessibility of the POIs and generate paths that account for obstacle distances, including collision avoidance maneuvers among UAVs. The proposed approach was validated through simulation testing and real-world experiments that evaluated the method's performance on board the UAVs.
Pre-trained models learn general representations from large datsets which can be fine-turned for specific tasks to significantly reduce training time. Pre-trained models like generative pretrained transformers (GPT), bidirectional encoder representations from transformers (BERT), vision transfomers (ViT) have become a cornerstone of current research in machine learning. This study proposes a multi-modal movie recommendation system by extract features of the well designed posters for each movie and the narrative text description of the movie. This system uses the BERT model to extract the information of text modality, the ViT model applied to extract the information of poster/image modality, and the Transformer architecture for feature fusion of all modalities to predict users' preference. The integration of pre-trained foundational models with some smaller data sets in downstream applications capture multi-modal content features in a more comprehensive manner, thereby providing more accurate recommendations. The efficiency of the proof-of-concept model is verified by the standard benchmark problem the MovieLens 100K and 1M datasets. The prediction accuracy of user ratings is enhanced in comparison to the baseline algorithm, thereby demonstrating the potential of this cross-modal algorithm to be applied for movie or video recommendation.
Purpose: Federated training is often hindered by heterogeneous datasets due to divergent data storage options, inconsistent naming schemes, varied annotation procedures, and disparities in label quality. This is particularly evident in the emerging multi-modal learning paradigms, where dataset harmonization including a uniform data representation and filtering options are of paramount importance. Methods: DICOM structured reports enable the standardized linkage of arbitrary information beyond the imaging domain and can be used within Python deep learning pipelines with highdicom. Building on this, we developed an open platform for data integration and interactive filtering capabilities that simplifies the process of assembling multi-modal datasets. Results: In this study, we extend our prior work by showing its applicability to more and divergent data types, as well as streamlining datasets for federated training within an established consortium of eight university hospitals in Germany. We prove its concurrent filtering ability by creating harmonized multi-modal datasets across all locations for predicting the outcome after minimally invasive heart valve replacement. The data includes DICOM data (i.e. computed tomography images, electrocardiography scans) as well as annotations (i.e. calcification segmentations, pointsets and pacemaker dependency), and metadata (i.e. prosthesis and diagnoses). Conclusion: Structured reports bridge the traditional gap between imaging systems and information systems. Utilizing the inherent DICOM reference system arbitrary data types can be queried concurrently to create meaningful cohorts for clinical studies. The graphical interface as well as example structured report templates will be made publicly available.
Heterogeneous Face Recognition (HFR) systems aim to enhance the capability of face recognition in challenging cross-modal authentication scenarios. However, the significant domain gap between the source and target modalities poses a considerable challenge for cross-domain matching. Existing literature primarily focuses on developing HFR approaches for specific pairs of face modalities, necessitating the explicit training of models for each source-target combination. In this work, we introduce a novel framework designed to train a modality-agnostic HFR method capable of handling multiple modalities during inference, all without explicit knowledge of the target modality labels. We achieve this by implementing a computationally efficient automatic routing mechanism called Switch Style Modulation Blocks (SSMB) that trains various domain expert modulators which transform the feature maps adaptively reducing the domain gap. Our proposed SSMB can be trained end-to-end and seamlessly integrated into pre-trained face recognition models, transforming them into modality-agnostic HFR models. We have performed extensive evaluations on HFR benchmark datasets to demonstrate its effectiveness. The source code and protocols will be made publicly available.
The deployment process of a spiking neural network (SNN) often involves partitioning the neural network and mapping these partitions onto processing units within the neuromorphic hardware. Finding optimal deployment schemes is an NP-hard problem. Optimizing these schemes presents challenges, particular in devising computationally effective cost functions optimization objectives such as communication time consumption and energy efficiency. These objectives require consideration of network dynamics shaped by neuron activity patterns, demanding intricate mathematical analyses or simulations for integrating them into a cost model for SNN development. Our approach focuses on network dynamics, which are hardware-independent and can be modeled separately from specific hardware configurations. We employ a pairwise Ising-type maximum entropy model, which is a model show effective in accurately capturing pairwise correlations among system components in a collaborative system. On top of this model, we incorporates hardware and network structure-specific factors to devise a cost function. We conducted an extremely preliminary investigation using the SpiNNaker machine. We show that the ising model training can also be computationally complex. Currently, we lack sufficient evidence to substantiate the effectiveness of our proposed methods. Further efforts is needed to explore integrating network dynamics into SNN deployment.
Reduced-rank regressions are powerful tools used to identify co-movements within economic time series. However, this task becomes challenging when we observe matrix-valued time series, where each dimension may have a different co-movement structure. We propose reduced-rank regressions with a tensor structure for the coefficient matrix to provide new insights into co-movements within and between the dimensions of matrix-valued time series. Moreover, we relate the co-movement structures to two commonly used reduced-rank models, namely the serial correlation common feature and the index model. Two empirical applications involving U.S.\ states and economic indicators for the Eurozone and North American countries illustrate how our new tools identify co-movements.
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.
One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.
Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.