亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For flexible yet safe imitation learning (IL), we propose theory and a modular method, with a safety layer that enables a closed-form probability density/gradient of the safe generative continuous policy, end-to-end generative adversarial training, and worst-case safety guarantees. The safety layer maps all actions into a set of safe actions, and uses the change-of-variables formula plus additivity of measures for the density. The set of safe actions is inferred by first checking safety of a finite sample of actions via adversarial reachability analysis of fallback maneuvers, and then concluding on the safety of these actions' neighborhoods using, e.g., Lipschitz continuity. We provide theoretical analysis showing the robustness advantage of using the safety layer already during training (imitation error linear in the horizon) compared to only using it at test time (up to quadratic error). In an experiment on real-world driver interaction data, we empirically demonstrate tractability, safety and imitation performance of our approach.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

In healthcare applications, understanding how machine/deep learning models make decisions is crucial. In this study, we introduce a neural network framework, $\textit{Truth Table rules}$ (TT-rules), that combines the global and exact interpretability properties of rule-based models with the high performance of deep neural networks. TT-rules is built upon $\textit{Truth Table nets}$ (TTnet), a family of deep neural networks initially developed for formal verification. By extracting the necessary and sufficient rules $\mathcal{R}$ from the trained TTnet model (global interpretability) to yield the same output as the TTnet (exact interpretability), TT-rules effectively transforms the neural network into a rule-based model. This rule-based model supports binary classification, multi-label classification, and regression tasks for small to large tabular datasets. After outlining the framework, we evaluate TT-rules' performance on healthcare applications and compare it to state-of-the-art rule-based methods. Our results demonstrate that TT-rules achieves equal or higher performance compared to other interpretable methods. Notably, TT-rules presents the first accurate rule-based model capable of fitting large tabular datasets, including two real-life DNA datasets with over 20K features.

Federated learning (FL), as an effective decentralized distributed learning approach, enables multiple institutions to jointly train a model without sharing their local data. However, the domain feature shift caused by different acquisition devices/clients substantially degrades the performance of the FL model. Furthermore, most existing FL approaches aim to improve accuracy without considering reliability (e.g., confidence or uncertainty). The predictions are thus unreliable when deployed in safety-critical applications. Therefore, aiming at improving the performance of FL in non-Domain feature issues while enabling the model more reliable. In this paper, we propose a novel reliable federated disentangling network, termed RFedDis, which utilizes feature disentangling to enable the ability to capture the global domain-invariant cross-client representation and preserve local client-specific feature learning. Meanwhile, to effectively integrate the decoupled features, an uncertainty-aware decision fusion is also introduced to guide the network for dynamically integrating the decoupled features at the evidence level, while producing a reliable prediction with an estimated uncertainty. To the best of our knowledge, our proposed RFedDis is the first work to develop an FL approach based on evidential uncertainty combined with feature disentangling, which enhances the performance and reliability of FL in non-IID domain features. Extensive experimental results show that our proposed RFedDis provides outstanding performance with a high degree of reliability as compared to other state-of-the-art FL approaches.

With the rapid development of AI technology, we have witnessed numerous innovations and conveniences. However, along with these advancements come privacy threats and risks. Fully Homomorphic Encryption (FHE) emerges as a key technology for privacy-preserving computation, enabling computations while maintaining data privacy. Nevertheless, FHE has limitations in processing continuous non-polynomial functions as it is restricted to discrete integers and supports only addition and multiplication. Spiking Neural Networks (SNNs) operate on discrete spike signals, naturally aligning with the properties of FHE. In this paper, we present a framework called FHE-DiCSNN. This framework is based on the efficient TFHE scheme and leverages the discrete properties of SNNs to achieve high prediction performance on ciphertexts. Firstly, by employing bootstrapping techniques, we successfully implement computations of the Leaky Integrate-and-Fire neuron model on ciphertexts. Through bootstrapping, we can facilitate computations for SNNs of arbitrary depth. This framework can be extended to other spiking neuron models, providing a novel framework for the homomorphic evaluation of SNNs. Secondly, inspired by CNNs, we adopt convolutional methods to replace Poisson encoding. This not only enhances accuracy but also mitigates the issue of prolonged simulation time caused by random encoding. Furthermore, we employ engineering techniques to parallelize the computation of bootstrapping, resulting in a significant improvement in computational efficiency. Finally, we evaluate our model on the MNIST dataset. Experimental results demonstrate that, with the optimal parameter configuration, FHE-DiCSNN achieves an accuracy of 97.94% on ciphertexts, with a loss of only 0.53% compared to the original network's accuracy of 98.47%. Moreover, each prediction requires only 0.75 seconds of computation time

Federated Learning (FL) has emerged as a promising approach to enable collaborative learning among multiple clients while preserving data privacy. However, cross-domain FL tasks, where clients possess data from different domains or distributions, remain a challenging problem due to the inherent heterogeneity. In this paper, we present UNIDEAL, a novel FL algorithm specifically designed to tackle the challenges of cross-domain scenarios and heterogeneous model architectures. The proposed method introduces Adjustable Teacher-Student Mutual Evaluation Curriculum Learning, which significantly enhances the effectiveness of knowledge distillation in FL settings. We conduct extensive experiments on various datasets, comparing UNIDEAL with state-of-the-art baselines. Our results demonstrate that UNIDEAL achieves superior performance in terms of both model accuracy and communication efficiency. Additionally, we provide a convergence analysis of the algorithm, showing a convergence rate of O(1/T) under non-convex conditions.

Among the flourishing research of weakly supervised learning (WSL), we recognize the lack of a unified interpretation of the mechanism behind the weakly supervised scenarios, let alone a systematic treatment of the risk rewrite problem, a crucial step in the empirical risk minimization approach. In this paper, we introduce a framework providing a comprehensive understanding and a unified methodology for WSL. The formulation component of the framework, leveraging a contamination perspective, provides a unified interpretation of how weak supervision is formed and subsumes fifteen existing WSL settings. The induced reduction graphs offer comprehensive connections over WSLs. The analysis component of the framework, viewed as a decontamination process, provides a systematic method of conducting risk rewrite. In addition to the conventional inverse matrix approach, we devise a novel strategy called marginal chain aiming to decontaminate distributions. We justify the feasibility of the proposed framework by recovering existing rewrites reported in the literature.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

Recent advances in representation learning have demonstrated an ability to represent information from different modalities such as video, text, and audio in a single high-level embedding vector. In this work we present a self-supervised learning framework that is able to learn a representation that captures finer levels of granularity across different modalities such as concepts or events represented by visual objects or spoken words. Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities. Beyond the shared embedding space, we propose a Cross-Modal Code Matching objective that forces the representations from different views (modalities) to have a similar distribution over the discrete embedding space such that cross-modal objects/actions localization can be performed without direct supervision. In our experiments we show that the proposed discretized multi-modal fine-grained representation (e.g., pixel/word/frame) can complement high-level summary representations (e.g., video/sentence/waveform) for improved performance on cross-modal retrieval tasks. We also observe that the discretized representation uses individual clusters to represent the same semantic concept across modalities.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

Rehearsal, seeking to remind the model by storing old knowledge in lifelong learning, is one of the most effective ways to mitigate catastrophic forgetting, i.e., biased forgetting of previous knowledge when moving to new tasks. However, the old tasks of the most previous rehearsal-based methods suffer from the unpredictable domain shift when training the new task. This is because these methods always ignore two significant factors. First, the Data Imbalance between the new task and old tasks that makes the domain of old tasks prone to shift. Second, the Task Isolation among all tasks will make the domain shift toward unpredictable directions; To address the unpredictable domain shift, in this paper, we propose Multi-Domain Multi-Task (MDMT) rehearsal to train the old tasks and new task parallelly and equally to break the isolation among tasks. Specifically, a two-level angular margin loss is proposed to encourage the intra-class/task compactness and inter-class/task discrepancy, which keeps the model from domain chaos. In addition, to further address domain shift of the old tasks, we propose an optional episodic distillation loss on the memory to anchor the knowledge for each old task. Experiments on benchmark datasets validate the proposed approach can effectively mitigate the unpredictable domain shift.

Graph Convolutional Networks (GCNs) have received increasing attention in recent machine learning. How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly optimizing the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the GEneralized Multi-relational Graph Convolutional Networks (GEM-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge-base embedding methods, and goes beyond. Our theoretical analysis shows that GEM-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of GEM-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

北京阿比特科技有限公司