The consumer drone market is rapidly expanding with new drone models featuring unique variations of hardware and software. The rapid development of drone technology and variability in drone systems can make it difficult for digital forensic investigators and tools to keep pace and effectively extract and analyse digital evidence from drones. Furthermore, the growing popularity of drones and their increased use in illegal and harmful activities, such as smuggling, espionage, and even terrorism, has led to an increase in the number of drone forensic cases for authorities to manage. To assist forensic investigators, a static digital forensic case study was conducted on two drone devices recently released by Da-Jiang Innovations (DJI): the Mini 3 Pro drone, and its remote controller, the DJI RC. The study discovered the presence of several digital artefacts on both devices, including recorded media, flight logs, and other information that could help investigators trace the drone's usage and identify its operator. Additionally, this paper explored several methods for extracting and visualising the drone's flight history, and highlights some of the potential methods used to limit, obscure, or remove key types of digital evidence.
以(yi)“The Future of Possible(未來無所(suo)不能)”為主(zhu)旨理念,致力于成為全(quan)球飛(fei)(fei)行(xing)影像系(xi)(xi)統(tong)先(xian)驅(qu)。公司發(fa)展至今,除(chu)中(zhong)國大陸以(yi)外,還在香港(gang)、美國、德國、荷(he)蘭(lan)、日本、韓國設有辦公室(shi),全(quan)球員(yuan)工人數超過(guo) 6000 人。DJI 從商用自(zi)主(zhu)飛(fei)(fei)行(xing)控制系(xi)(xi)統(tong)起步,陸續推出(chu)飛(fei)(fei)控系(xi)(xi)統(tong)、云臺、多(duo)旋翼飛(fei)(fei)行(xing)器、小型多(duo)旋翼一體(ti)機等產(chan)品系(xi)(xi)列,已被廣(guang)泛用于影視、農業、地(di)產(chan)、新(xin)聞、消防(fang)、救援、能源、遙感測繪、野生動物保護等領域(yu),占(zhan)據全(quan)球 80% 以(yi)上(shang)市場份額。
The control of large-scale, multi-agent systems often entails distributing decision-making across the system components. However, with advances in communication and computation technologies, we can consider new collaborative decision-making paradigms that exist somewhere between centralized and distributed control. In this work, we seek to understand the benefits and costs of increased collaborative communication in multi-agent systems. We specifically study this in the context of common interest games in which groups of up to k agents can coordinate their actions in maximizing the common objective function. The equilibria that emerge in these systems are the k-strong Nash equilibria of the common interest game; studying the properties of these states can provide relevant insights into the efficacy of inter-agent collaboration. Our contributions come threefold: 1) provide bounds on how well k-strong Nash equilibria approximate the optimal system welfare, formalized by the k-strong price of anarchy, 2) study the run-time and transient performance of collaborative agent-based dynamics, and 3) consider the task of redesigning objectives for groups of agents which improve system performance. We study these three facets generally as well as in the context of resource allocation problems, in which we provide tractable linear programs that give tight bounds on the k-strong price of anarchy.
Residual neural networks are widely used in computer vision tasks. They enable the construction of deeper and more accurate models by mitigating the vanishing gradient problem. Their main innovation is the residual block which allows the output of one layer to bypass one or more intermediate layers and be added to the output of a later layer. Their complex structure and the buffering required by the residual block make them difficult to implement on resource-constrained platforms. We present a novel design flow for implementing deep learning models for field programmable gate arrays optimized for ResNets, using a strategy to reduce their buffering overhead to obtain a resource-efficient implementation of the residual layer. Our high-level synthesis (HLS)-based flow encompasses a thorough set of design principles and optimization strategies, exploiting in novel ways standard techniques such as temporal reuse and loop merging to efficiently map ResNet models, and potentially other skip connection-based NN architectures, into FPGA. The models are quantized to 8-bit integers for both weights and activations, 16-bit for biases, and 32-bit for accumulations. The experimental results are obtained on the CIFAR-10 dataset using ResNet8 and ResNet20 implemented with Xilinx FPGAs using HLS on the Ultra96-V2 and Kria KV260 boards. Compared to the state-of-the-art on the Kria KV260 board, our ResNet20 implementation achieves 2.88X speedup with 0.5% higher accuracy of 91.3%, while ResNet8 accuracy improves by 2.8% to 88.7%. The throughputs of ResNet8 and ResNet20 are 12971 FPS and 3254 FPS on the Ultra96 board, and 30153 FPS and 7601 FPS on the Kria KV26, respectively. They Pareto-dominate state-of-the-art solutions concerning accuracy, throughput, and energy.
Medical image segmentation methods normally perform poorly when there is a domain shift between training and testing data. Unsupervised Domain Adaptation (UDA) addresses the domain shift problem by training the model using both labeled data from the source domain and unlabeled data from the target domain. Source-Free UDA (SFUDA) was recently proposed for UDA without requiring the source data during the adaptation, due to data privacy or data transmission issues, which normally adapts the pre-trained deep model in the testing stage. However, in real clinical scenarios of medical image segmentation, the trained model is normally frozen in the testing stage. In this paper, we propose Fourier Visual Prompting (FVP) for SFUDA of medical image segmentation. Inspired by prompting learning in natural language processing, FVP steers the frozen pre-trained model to perform well in the target domain by adding a visual prompt to the input target data. In FVP, the visual prompt is parameterized using only a small amount of low-frequency learnable parameters in the input frequency space, and is learned by minimizing the segmentation loss between the predicted segmentation of the prompted target image and reliable pseudo segmentation label of the target image under the frozen model. To our knowledge, FVP is the first work to apply visual prompts to SFUDA for medical image segmentation. The proposed FVP is validated using three public datasets, and experiments demonstrate that FVP yields better segmentation results, compared with various existing methods.
Symmetry is present throughout nature and continues to play an increasingly central role in physics and machine learning. Fundamental symmetries, such as Poincar\'{e} invariance, allow physical laws discovered in laboratories on Earth to be extrapolated to the farthest reaches of the universe. Symmetry is essential to achieving this extrapolatory power in machine learning applications. For example, translation invariance in image classification allows models with fewer parameters, such as convolutional neural networks, to be trained on smaller data sets and achieve state-of-the-art performance. In this paper, we provide a unifying theoretical and methodological framework for incorporating symmetry into machine learning models in three ways: 1. enforcing known symmetry when training a model; 2. discovering unknown symmetries of a given model or data set; and 3. promoting symmetry during training by learning a model that breaks symmetries within a user-specified group of candidates when there is sufficient evidence in the data. We show that these tasks can be cast within a common mathematical framework whose central object is the Lie derivative associated with fiber-linear Lie group actions on vector bundles. We extend and unify several existing results by showing that enforcing and discovering symmetry are linear-algebraic tasks that are dual with respect to the bilinear structure of the Lie derivative. We also propose a novel way to promote symmetry by introducing a class of convex regularization functions based on the Lie derivative and nuclear norm relaxation to penalize symmetry breaking during training of machine learning models. We explain how these ideas can be applied to a wide range of machine learning models including basis function regression, dynamical systems discovery, multilayer perceptrons, and neural networks acting on spatial fields such as images.
Large language models exhibit promising general capabilities but often lack specialized knowledge for domain-specific tasks. Developing domain experts from a base model enables a range of applications without prohibitive training costs. This work demonstrates a method using continuous training and instruction fine-tuning to rapidly adapt Llama 2 base models to the Chinese medical domain. We first conduct continuous training on 1B tokens from Chinese medical references to teach relevant vocabulary and knowledge. The models are then fine-tuned on 54K examples sourced from the Chinese National Medical Licensing Examination. Experiments on Chinese medical data confirm the effectiveness of this approach, producing a model comparable to GPT-3.5-turbo while using way less computational resource. The resulting domain-specific model could be useful for various Chinese medical applications. More broadly, this provides a template for domain-specific training of large language models in areas where pre-trained models lack the required expertise, such as law, science, and engineering.
As deep learning models become increasingly large, they pose significant challenges in heterogeneous devices environments. The size of deep learning models makes it difficult to deploy them on low-power or resource-constrained devices, leading to long inference times and high energy consumption. To address these challenges, we propose FlexTrain, a framework that accommodates the diverse storage and computational resources available on different devices during the training phase. FlexTrain enables efficient deployment of deep learning models, while respecting device constraints, minimizing communication costs, and ensuring seamless integration with diverse devices. We demonstrate the effectiveness of FlexTrain on the CIFAR-100 dataset, where a single global model trained with FlexTrain can be easily deployed on heterogeneous devices, saving training time and energy consumption. We also extend FlexTrain to the federated learning setting, showing that our approach outperforms standard federated learning benchmarks on both CIFAR-10 and CIFAR-100 datasets.
Learning causal structures from interventional data is a fundamental problem with broad applications across various fields. While many previous works have focused on recovering the entire causal graph, in practice, there are scenarios where learning only part of the causal graph suffices. This is called $targeted$ causal discovery. In our work, we focus on two such well-motivated problems: subset search and causal matching. We aim to minimize the number of interventions in both cases. Towards this, we introduce the $Meek~separator$, which is a subset of vertices that, when intervened, decomposes the remaining unoriented edges into smaller connected components. We then present an efficient algorithm to find Meek separators that are of small sizes. Such a procedure is helpful in designing various divide-and-conquer-based approaches. In particular, we propose two randomized algorithms that achieve logarithmic approximation for subset search and causal matching, respectively. Our results provide the first known average-case provable guarantees for both problems. We believe that this opens up possibilities to design near-optimal methods for many other targeted causal structure learning problems arising from various applications.
Network clustering tackles the problem of identifying sets of nodes (communities) that have similar connection patterns. However, in many scenarios, nodes also have attributes that are correlated with the clustering structure. Thus, network information (edges) and node information (attributes) can be jointly leveraged to design high-performance clustering algorithms. Under a general model for the network and node attributes, this work establishes an information-theoretic criterion for the exact recovery of community labels and characterizes a phase transition determined by the Chernoff-Hellinger divergence of the model. The criterion shows how network and attribute information can be exchanged in order to have exact recovery (e.g., more reliable network information requires less reliable attribute information). This work also presents an iterative clustering algorithm that maximizes the joint likelihood, assuming that the probability distribution of network interactions and node attributes belong to exponential families. This covers a broad range of possible interactions (e.g., edges with weights) and attributes (e.g., non-Gaussian models), as well as sparse networks, while also exploring the connection between exponential families and Bregman divergences. Extensive numerical experiments using synthetic data indicate that the proposed algorithm outperforms classic algorithms that leverage only network or only attribute information as well as state-of-the-art algorithms that also leverage both sources of information. The contributions of this work provide insights into the fundamental limits and practical techniques for inferring community labels on node-attributed networks.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.