亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Convex regression is the problem of fitting a convex function to a data set consisting of input-output pairs. We present a new approach to this problem called spectrahedral regression, in which we fit a spectrahedral function to the data, i.e. a function that is the maximum eigenvalue of an affine matrix expression of the input. This method represents a significant generalization of polyhedral (also called max-affine) regression, in which a polyhedral function (a maximum of a fixed number of affine functions) is fit to the data. We prove bounds on how well spectrahedral functions can approximate arbitrary convex functions via statistical risk analysis. We also analyze an alternating minimization algorithm for the non-convex optimization problem of fitting the best spectrahedral function to a given data set. We show that this algorithm converges geometrically with high probability to a small ball around the optimal parameter given a good initialization. Finally, we demonstrate the utility of our approach with experiments on synthetic data sets as well as real data arising in applications such as economics and engineering design.

相關內容

Logistic regression is a widely used statistical model to describe the relationship between a binary response variable and predictor variables in data sets. It is often used in machine learning to identify important predictor variables. This task, variable selection, typically amounts to fitting a logistic regression model regularized by a convex combination of $\ell_1$ and $\ell_{2}^{2}$ penalties. Since modern big data sets can contain hundreds of thousands to billions of predictor variables, variable selection methods depend on efficient and robust optimization algorithms to perform well. State-of-the-art algorithms for variable selection, however, were not traditionally designed to handle big data sets; they either scale poorly in size or are prone to produce unreliable numerical results. It therefore remains challenging to perform variable selection on big data sets without access to adequate and costly computational resources. In this paper, we propose a nonlinear primal-dual algorithm that addresses these shortcomings. Specifically, we propose an iterative algorithm that provably computes a solution to a logistic regression problem regularized by an elastic net penalty in $O(T(m,n)\log(1/\epsilon))$ operations, where $\epsilon \in (0,1)$ denotes the tolerance and $T(m,n)$ denotes the number of arithmetic operations required to perform matrix-vector multiplication on a data set with $m$ samples each comprising $n$ features. This result improves on the known complexity bound of $O(\min(m^2n,mn^2)\log(1/\epsilon))$ for first-order optimization methods such as the classic primal-dual hybrid gradient or forward-backward splitting methods.

We study continuity of the roots of nonmonic polynomials as a function of their coefficients using only the most elementary results from an introductory course in real analysis and the theory of single variable polynomials. Our approach gives both qualitative and quantitative results in the case that the degree of the unperturbed polynomial can change under a perturbation of its coefficients, a case that naturally occurs, for instance, in stability theory of polynomials, singular perturbation theory, or in the perturbation theory for generalized eigenvalue problems. An application of our results in multivariate stability theory is provided which is important in, for example, the study of hyperbolic polynomials or realizability and synthesis problems in passive electrical network theory, and will be of general interest to mathematicians as well as physicists and engineers.

In this paper we prove upper and lower bounds on the minimal spherical dispersion. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, up to logarithmic terms linear in the dimension $d$. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere.

Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the capability of identifying relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We present simulations demonstrating that our approaches exhibit improved performance in terms of the ability to recover all the relevant predictors in a variety of data settings, compared to existing BART-based variable selection methods.

Modern-day problems in statistics often face the challenge of exploring and analyzing complex non-Euclidean object data that do not conform to vector space structures or operations. Examples of such data objects include covariance matrices, graph Laplacians of networks, and univariate probability distribution functions. In the current contribution a new concurrent regression model is proposed to characterize the time-varying relation between an object in a general metric space (as a response) and a vector in $\reals^p$ (as a predictor), where concepts from Fr\'echet regression is employed. Concurrent regression has been a well-developed area of research for Euclidean predictors and responses, with many important applications for longitudinal studies and functional data. However, there is no such model available so far for general object data as responses. We develop generalized versions of both global least squares regression and locally weighted least squares smoothing in the context of concurrent regression for responses that are situated in general metric spaces and propose estimators that can accommodate sparse and/or irregular designs. Consistency results are demonstrated for sample estimates of appropriate population targets along with the corresponding rates of convergence. The proposed models are illustrated with human mortality data and resting state functional Magnetic Resonance Imaging data (fMRI) as responses.

For supervised classification problems, this paper considers estimating the query's label probability through local regression using observed covariates. Well-known nonparametric kernel smoother and $k$-nearest neighbor ($k$-NN) estimator, which take label average over a ball around the query, are consistent but asymptotically biased particularly for a large radius of the ball. To eradicate such bias, local polynomial regression (LPoR) and multiscale $k$-NN (MS-$k$-NN) learn the bias term by local regression around the query and extrapolate it to the query itself. However, their theoretical optimality has been shown for the limit of the infinite number of training samples. For correcting the asymptotic bias with fewer observations, this paper proposes a local radial regression (LRR) and its logistic regression variant called local radial logistic regression (LRLR), by combining the advantages of LPoR and MS-$k$-NN. The idea is simple: we fit the local regression to observed labels by taking the radial distance as the explanatory variable and then extrapolate the estimated label probability to zero distance. Our numerical experiments, including real-world datasets of daily stock indices, demonstrate that LRLR outperforms LPoR and MS-$k$-NN.

The task of multi-label learning is to predict a set of relevant labels for the unseen instance. Traditional multi-label learning algorithms treat each class label as a logical indicator of whether the corresponding label is relevant or irrelevant to the instance, i.e., +1 represents relevant to the instance and -1 represents irrelevant to the instance. Such label represented by -1 or +1 is called logical label. Logical label cannot reflect different label importance. However, for real-world multi-label learning problems, the importance of each possible label is generally different. For the real applications, it is difficult to obtain the label importance information directly. Thus we need a method to reconstruct the essential label importance from the logical multilabel data. To solve this problem, we assume that each multi-label instance is described by a vector of latent real-valued labels, which can reflect the importance of the corresponding labels. Such label is called numerical label. The process of reconstructing the numerical labels from the logical multi-label data via utilizing the logical label information and the topological structure in the feature space is called Label Enhancement. In this paper, we propose a novel multi-label learning framework called LEMLL, i.e., Label Enhanced Multi-Label Learning, which incorporates regression of the numerical labels and label enhancement into a unified framework. Extensive comparative studies validate that the performance of multi-label learning can be improved significantly with label enhancement and LEMLL can effectively reconstruct latent label importance information from logical multi-label data.

Recently, label consistent k-svd(LC-KSVD) algorithm has been successfully applied in image classification. The objective function of LC-KSVD is consisted of reconstruction error, classification error and discriminative sparse codes error with l0-norm sparse regularization term. The l0-norm, however, leads to NP-hard issue. Despite some methods such as orthogonal matching pursuit can help solve this problem to some extent, it is quite difficult to find the optimum sparse solution. To overcome this limitation, we propose a label embedded dictionary learning(LEDL) method to utilise the $\ell_1$-norm as the sparse regularization term so that we can avoid the hard-to-optimize problem by solving the convex optimization problem. Alternating direction method of multipliers and blockwise coordinate descent algorithm are then used to optimize the corresponding objective function. Extensive experimental results on six benchmark datasets illustrate that the proposed algorithm has achieved superior performance compared to some conventional classification algorithms.

The eigendeomposition of nearest-neighbor (NN) graph Laplacian matrices is the main computational bottleneck in spectral clustering. In this work, we introduce a highly-scalable, spectrum-preserving graph sparsification algorithm that enables to build ultra-sparse NN (u-NN) graphs with guaranteed preservation of the original graph spectrums, such as the first few eigenvectors of the original graph Laplacian. Our approach can immediately lead to scalable spectral clustering of large data networks without sacrificing solution quality. The proposed method starts from constructing low-stretch spanning trees (LSSTs) from the original graphs, which is followed by iteratively recovering small portions of "spectrally critical" off-tree edges to the LSSTs by leveraging a spectral off-tree embedding scheme. To determine the suitable amount of off-tree edges to be recovered to the LSSTs, an eigenvalue stability checking scheme is proposed, which enables to robustly preserve the first few Laplacian eigenvectors within the sparsified graph. Additionally, an incremental graph densification scheme is proposed for identifying extra edges that have been missing in the original NN graphs but can still play important roles in spectral clustering tasks. Our experimental results for a variety of well-known data sets show that the proposed method can dramatically reduce the complexity of NN graphs, leading to significant speedups in spectral clustering.

This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.

北京阿比特科技有限公司