Remote Sensing Image-Text Retrieval (RSITR) is pivotal for knowledge services and data mining in the remote sensing (RS) domain. Considering the multi-scale representations in image content and text vocabulary can enable the models to learn richer representations and enhance retrieval. Current multi-scale RSITR approaches typically align multi-scale fused image features with text features, but overlook aligning image-text pairs at distinct scales separately. This oversight restricts their ability to learn joint representations suitable for effective retrieval. We introduce a novel Multi-Scale Alignment (MSA) method to overcome this limitation. Our method comprises three key innovations: (1) Multi-scale Cross-Modal Alignment Transformer (MSCMAT), which computes cross-attention between single-scale image features and localized text features, integrating global textual context to derive a matching score matrix within a mini-batch, (2) a multi-scale cross-modal semantic alignment loss that enforces semantic alignment across scales, and (3) a cross-scale multi-modal semantic consistency loss that uses the matching matrix from the largest scale to guide alignment at smaller scales. We evaluated our method across multiple datasets, demonstrating its efficacy with various visual backbones and establishing its superiority over existing state-of-the-art methods. The GitHub URL for our project is: //github.com/yr666666/MSA
OpenDiLoCo is an open-source implementation and replication of the Distributed Low-Communication (DiLoCo) training method for large language models. We provide a reproducible implementation of the DiLoCo experiments, offering it within a scalable, decentralized training framework using the Hivemind library. We demonstrate its effectiveness by training a model across two continents and three countries, while maintaining 90-95% compute utilization. Additionally, we conduct ablations studies focusing on the algorithm's compute efficiency, scalability in the number of workers and show that its gradients can be all-reduced using FP16 without any performance degradation. Furthermore, we scale OpenDiLoCo to 3x the size of the original work, demonstrating its effectiveness for billion parameter models.
Explainable Multimodal Emotion Recognition (EMER) is an emerging task that aims to achieve reliable and accurate emotion recognition. However, due to the high annotation cost, the existing dataset (denoted as EMER-Fine) is small, making it difficult to perform supervised training. To reduce the annotation cost and expand the dataset size, this paper reviews the previous dataset construction process. Then, we simplify the annotation pipeline, avoid manual checks, and replace the closed-source models with open-source models. Finally, we build \textbf{EMER-Coarse}, a coarsely-labeled dataset containing large-scale samples. Besides the dataset, we propose a two-stage training framework \textbf{AffectGPT}. The first stage exploits EMER-Coarse to learn a coarse mapping between multimodal inputs and emotion-related descriptions; the second stage uses EMER-Fine to better align with manually-checked results. Experimental results demonstrate the effectiveness of our proposed method on the challenging EMER task. To facilitate further research, we will make the code and dataset available at: //github.com/zeroQiaoba/AffectGPT.
This paper investigates the feasibility and effectiveness of employing Generative Adversarial Networks (GANs) for the generation of decoy configurations in the field of cyber defense. The utilization of honeypots has been extensively studied in the past; however, selecting appropriate decoy configurations for a given cyber scenario (and subsequently retrieving/generating them) remain open challenges. Existing approaches often rely on maintaining lists of configurations or storing collections of pre-configured images, lacking adaptability and efficiency. In this pioneering study, we present a novel approach that leverages GANs' learning capabilities to tackle these challenges. To the best of our knowledge, no prior attempts have been made to utilize GANs specifically for generating decoy configurations. Our research aims to address this gap and provide cyber defenders with a powerful tool to bolster their network defenses.
Although Federated Learning (FL) is promising in knowledge sharing for heterogeneous Artificial Intelligence of Thing (AIoT) devices, their training performance and energy efficacy are severely restricted in practical battery-driven scenarios due to the ``wooden barrel effect'' caused by the mismatch between homogeneous model paradigms and heterogeneous device capability. As a result, due to various kinds of differences among devices, it is hard for existing FL methods to conduct training effectively in energy-constrained scenarios, such as battery constraints of devices. To tackle the above issues, we propose an energy-aware FL framework named DR-FL, which considers the energy constraints in both clients and heterogeneous deep learning models to enable energy-efficient FL. Unlike Vanilla FL, DR-FL adopts our proposed Muti-Agents Reinforcement Learning (MARL)-based dual-selection method, which allows participated devices to make contributions to the global model effectively and adaptively based on their computing capabilities and energy capacities in a MARL-based manner. Experiments conducted with various widely recognized datasets demonstrate that DR-FL has the capability to optimize the exchange of knowledge among diverse models in large-scale AIoT systems while adhering to energy limitations. Additionally, it improves the performance of each individual heterogeneous device's model.
Crowd counting is gaining societal relevance, particularly in domains of Urban Planning, Crowd Management, and Public Safety. This paper introduces Fourier-guided attention (FGA), a novel attention mechanism for crowd count estimation designed to address the inefficient full-scale global pattern capture in existing works on convolution-based attention networks. FGA efficiently captures multi-scale information, including full-scale global patterns, by utilizing Fast-Fourier Transformations (FFT) along with spatial attention for global features and convolutions with channel-wise attention for semi-global and local features. The architecture of FGA involves a dual-path approach: (1) a path for processing full-scale global features through FFT, allowing for efficient extraction of information in the frequency domain, and (2) a path for processing remaining feature maps for semi-global and local features using traditional convolutions and channel-wise attention. This dual-path architecture enables FGA to seamlessly integrate frequency and spatial information, enhancing its ability to capture diverse crowd patterns. We apply FGA in the last layers of two popular crowd-counting works, CSRNet and CANNet, to evaluate the module's performance on benchmark datasets such as ShanghaiTech-A, ShanghaiTech-B, UCF-CC-50, and JHU++ crowd. The experiments demonstrate a notable improvement across all datasets based on Mean-Squared-Error (MSE) and Mean-Absolute-Error (MAE) metrics, showing comparable performance to recent state-of-the-art methods. Additionally, we illustrate the interpretability using qualitative analysis, leveraging Grad-CAM heatmaps, to show the effectiveness of FGA in capturing crowd patterns.
Grounding external knowledge can enhance the factuality of responses in dialogue generation. However, excessive emphasis on it might result in the lack of engaging and diverse expressions. Through the introduction of randomness in sampling, current approaches can increase the diversity. Nevertheless, such sampling method could undermine the factuality in dialogue generation. In this study, to discover a solution for advancing creativity without relying on questionable randomness and to subtly reconcile the factuality and diversity within the source-grounded paradigm, a novel method named DoGe is proposed. DoGe can dynamically alternate between the utilization of internal parameter knowledge and external source knowledge based on the model's factual confidence. Extensive experiments on three widely-used datasets show that DoGe can not only enhance response diversity but also maintain factuality, and it significantly surpasses other various decoding strategy baselines.
Smart Contract Vulnerability Detection (SCVD) is crucial to guarantee the quality of blockchain-based systems. Graph neural networks have been shown to be effective in learning semantic representations of smart contract code and are commonly adopted by existing deep learning-based SCVD. However, the current methods still have limitations in their utilization of graph sampling or subgraph pooling based on predefined rules for extracting crucial components from structure graphs of smart contract code. These predefined rule-based strategies, typically designed using static rules or heuristics, demonstrate limited adaptability to dynamically adjust extraction strategies according to the structure and content of the graph in heterogeneous topologies of smart contract code. Consequently, these strategies may not possess universal applicability to all smart contracts, potentially leading to false positives or omissions. To address these problems, we propose AFPNet, a novel vulnerability detection model equipped with a feature perception module that has dynamic weights for comprehensive scanning of the entire smart contract code and automatic extraction of crucial code snippets (the $P$ snippets with the largest weights). Subsequently, the relationship perception attention module employs an attention mechanism to learn dependencies among these code snippets and detect smart contract vulnerabilities. The efforts made by AFPNet consistently enable the capture of crucial code snippets and enhance the performance of SCVD optimization. We conduct an evaluation of AFPNet in the several large-scale datasets with vulnerability labels. The experimental results show that our AFPNet significantly outperforms the state-of-the-art approach by 6.38\%-14.02\% in term of F1-score. The results demonstrate the effectiveness of AFPNet in dynamically extracting valuable information and vulnerability detection.
Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured from various viewpoints. Unfortunately, capturing surround view ($360^{\circ}$ viewpoint) images is impossible or impractical in many real-world imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation. In these restricted baseline imaging scenarios, the GS algorithm suffers from a well-known 'missing cone' problem, which results in poor reconstruction along the depth axis. In this manuscript, we demonstrate that using transient data (from sonars) allows us to address the missing cone problem by sampling high-frequency data along the depth axis. We extend the Gaussian splatting algorithms for two commonly used sonars and propose fusion algorithms that simultaneously utilize RGB camera data and sonar data. Through simulations, emulations, and hardware experiments across various imaging scenarios, we show that the proposed fusion algorithms lead to significantly better novel view synthesis (5 dB improvement in PSNR) and 3D geometry reconstruction (60% lower Chamfer distance).
Cross-Domain Recommendation (CDR) seeks to utilize knowledge from different domains to alleviate the problem of data sparsity in the target recommendation domain, and it has been gaining more attention in recent years. Although there have been notable advancements in this area, most current methods represent users and items in Euclidean space, which is not ideal for handling long-tail distributed data in recommendation systems. Additionally, adding data from other domains can worsen the long-tail characteristics of the entire dataset, making it harder to train CDR models effectively. Recent studies have shown that hyperbolic methods are particularly suitable for modeling long-tail distributions, which has led us to explore hyperbolic representations for users and items in CDR scenarios. However, due to the distinct characteristics of the different domains, applying hyperbolic representation learning to CDR tasks is quite challenging. In this paper, we introduce a new framework called Hyperbolic Contrastive Learning (HCTS), designed to capture the unique features of each domain while enabling efficient knowledge transfer between domains. We achieve this by embedding users and items from each domain separately and mapping them onto distinct hyperbolic manifolds with adjustable curvatures for prediction. To improve the representations of users and items in the target domain, we develop a hyperbolic contrastive learning module for knowledge transfer. Extensive experiments on real-world datasets demonstrate that hyperbolic manifolds are a promising alternative to Euclidean space for CDR tasks.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.