Robotic arms are widely used in automatic industries. However, with wide applications of deep learning in robotic arms, there are new challenges such as the allocation of grasping computing power and the growing demand for security. In this work, we propose a robotic arm grasping approach based on deep learning and edge-cloud collaboration. This approach realizes the arbitrary grasp planning of the robot arm and considers the grasp efficiency and information security. In addition, the encoder and decoder trained by GAN enable the images to be encrypted while compressing, which ensures the security of privacy. The model achieves 92% accuracy on the OCID dataset, the image compression ratio reaches 0.03%, and the structural difference value is higher than 0.91.
One of the most pressing challenges for the detection of face-manipulated videos is generalising to forgery methods not seen during training while remaining effective under common corruptions such as compression. In this paper, we examine whether we can tackle this issue by harnessing videos of real talking faces, which contain rich information on natural facial appearance and behaviour and are readily available in large quantities online. Our method, termed RealForensics, consists of two stages. First, we exploit the natural correspondence between the visual and auditory modalities in real videos to learn, in a self-supervised cross-modal manner, temporally dense video representations that capture factors such as facial movements, expression, and identity. Second, we use these learned representations as targets to be predicted by our forgery detector along with the usual binary forgery classification task; this encourages it to base its real/fake decision on said factors. We show that our method achieves state-of-the-art performance on cross-manipulation generalisation and robustness experiments, and examine the factors that contribute to its performance. Our results suggest that leveraging natural and unlabelled videos is a promising direction for the development of more robust face forgery detectors.
Today, an increasing number of Adaptive Deep Neural Networks (AdNNs) are being used on resource-constrained embedded devices. We observe that, similar to traditional software, redundant computation exists in AdNNs, resulting in considerable performance degradation. The performance degradation is dependent on the input and is referred to as input-dependent performance bottlenecks (IDPBs). To ensure an AdNN satisfies the performance requirements of resource-constrained applications, it is essential to conduct performance testing to detect IDPBs in the AdNN. Existing neural network testing methods are primarily concerned with correctness testing, which does not involve performance testing. To fill this gap, we propose DeepPerform, a scalable approach to generate test samples to detect the IDPBs in AdNNs. We first demonstrate how the problem of generating performance test samples detecting IDPBs can be formulated as an optimization problem. Following that, we demonstrate how DeepPerform efficiently handles the optimization problem by learning and estimating the distribution of AdNNs' computational consumption. We evaluate DeepPerform on three widely used datasets against five popular AdNN models. The results show that DeepPerform generates test samples that cause more severe performance degradation (FLOPs: increase up to 552\%). Furthermore, DeepPerform is substantially more efficient than the baseline methods in generating test inputs(runtime overhead: only 6-10 milliseconds).
In solving multi-modal, multi-objective optimization problems (MMOPs), the objective is not only to find a good representation of the Pareto-optimal front (PF) in the objective space but also to find all equivalent Pareto-optimal subsets (PSS) in the variable space. Such problems are practically relevant when a decision maker (DM) is interested in identifying alternative designs with similar performance. There has been significant research interest in recent years to develop efficient algorithms to deal with MMOPs. However, the existing algorithms still require prohibitive number of function evaluations (often in several thousands) to deal with problems involving as low as two objectives and two variables. The algorithms are typically embedded with sophisticated, customized mechanisms that require additional parameters to manage the diversity and convergence in the variable and the objective spaces. In this letter, we introduce a steady-state evolutionary algorithm for solving MMOPs, with a simple design and no additional userdefined parameters that need tuning compared to a standard EA. We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations. The performance of the proposed algorithm is compared with six state-of-the-art algorithms (MO Ring PSO SCD, DN-NSGAII, TriMOEA-TA&R, CPDEA, MMOEA/DC and MMEA-WI). The proposed algorithm exhibits significantly better performance than the above algorithms based on the established metrics including IGDX, PSP and IGD. We hope this study would encourage design of simple, efficient and generalized algorithms to improve its uptake for practical applications.
Big data has been a pervasive catchphrase in recent years, but dealing with data scarcity has become a crucial question for many real-world deep learning (DL) applications. A popular methodology to efficiently enable the training of DL models to perform tasks in scenarios with low availability of data is transfer learning (TL). TL allows to transfer knowledge from a general domain to a specific target one. However, such a knowledge transfer may put privacy at risk when it comes to sensitive or private data. With CryptoTL we introduce a solution to this problem, and show for the first time a cryptographic privacy-preserving TL approach based on homomorphic encryption that is efficient and feasible for real-world use cases. We achieve this by carefully designing the framework such that training is always done in plain while still profiting from the privacy gained by homomorphic encryption. To demonstrate the efficiency of our framework, we instantiate it with the popular CKKS HE scheme and apply CryptoTL to classification tasks with small datasets and show the applicability of our approach for sentiment analysis and spam detection. Additionally, we highlight how our approach can be combined with differential privacy to further increase the security guarantees. Our extensive benchmarks show that using CryptoTL leads to high accuracy while still having practical fine-tuning and classification runtimes despite using homomorphic encryption. Concretely, one forward-pass through the encrypted layers of our setup takes roughly 1s on a notebook CPU.
Artificial and biological neural networks (ANNs and BNNs) can encode inputs in the form of combinations of individual neurons' activities. These combinatorial neural codes present a computational challenge for direct and efficient analysis due to their high dimensionality and often large volumes of data. Here we improve the computational complexity -- from factorial to quadratic time -- of direct algebraic methods previously applied to small examples and apply them to large neural codes generated by experiments. These methods provide a novel and efficient way of probing algebraic, geometric, and topological characteristics of combinatorial neural codes and provide insights into how such characteristics are related to learning and experience in neural networks. We introduce a procedure to perform hypothesis testing on the intrinsic features of neural codes using information geometry. We then apply these methods to neural activities from an ANN for image classification and a BNN for 2D navigation to, without observing any inputs or outputs, estimate the structure and dimensionality of the stimulus or task space. Additionally, we demonstrate how an ANN varies its internal representations across network depth and during learning.
3D Time-of-Flight (ToF) image sensors are used widely in applications such as self-driving cars, Augmented Reality (AR) and robotics. When implemented with Single-Photon Avalanche Diodes (SPADs), compact, array format sensors can be made that offer accurate depth maps over long distances, without the need for mechanical scanning. However, array sizes tend to be small, leading to low lateral resolution, which combined with low Signal-to-Noise Ratio (SNR) levels under high ambient illumination, may lead to difficulties in scene interpretation. In this paper, we use synthetic depth sequences to train a 3D Convolutional Neural Network (CNN) for denoising and upscaling (x4) depth data. Experimental results, based on synthetic as well as real ToF data, are used to demonstrate the effectiveness of the scheme. With GPU acceleration, frames are processed at >30 frames per second, making the approach suitable for low-latency imaging, as required for obstacle avoidance.
Grasping is the process of picking an object by applying forces and torques at a set of contacts. Recent advances in deep-learning methods have allowed rapid progress in robotic object grasping. We systematically surveyed the publications over the last decade, with a particular interest in grasping an object using all 6 degrees of freedom of the end-effector pose. Our review found four common methodologies for robotic grasping: sampling-based approaches, direct regression, reinforcement learning, and exemplar approaches. Furthermore, we found two 'supporting methods' around grasping that use deep-learning to support the grasping process, shape approximation, and affordances. We have distilled the publications found in this systematic review (85 papers) into ten key takeaways we consider crucial for future robotic grasping and manipulation research. An online version of the survey is available at //rhys-newbury.github.io/projects/6dof/
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.