亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of approximating the solution to $A(\mu) x(\mu) = b$ for many different values of the parameter $\mu$. Here we assume $A(\mu)$ is large, sparse, and nonsingular with a nonlinear dependence on $\mu$. Our method is based on a companion linearization derived from an accurate Chebyshev interpolation of $A(\mu)$ on the interval $[-a,a]$, $a \in \mathbb{R}$. The solution to the linearization is approximated in a preconditioned BiCG setting for shifted systems, where the Krylov basis matrix is formed once. This process leads to a short-term recurrence method, where one execution of the algorithm produces the approximation to $x(\mu)$ for many different values of the parameter $\mu \in [-a,a]$ simultaneously. In particular, this work proposes one algorithm which applies a shift-and-invert preconditioner exactly as well as an algorithm which applies the preconditioner inexactly. The competitiveness of the algorithms are illustrated with large-scale problems arising from a finite element discretization of a Helmholtz equation with parameterized material coefficient. The software used in the simulations is publicly available online, and thus all our experiments are reproducible.

相關內容

Assuming the Exponential Time Hypothesis (ETH), a result of Marx (ToC'10) implies that there is no $f(k)\cdot n^{o(k/\log k)}$ time algorithm that can solve 2-CSPs with $k$ constraints (over a domain of arbitrary large size $n$) for any computable function $f$. This lower bound is widely used to show that certain parameterized problems cannot be solved in time $f(k)\cdot n^{o(k/\log k)}$ time (assuming the ETH). The purpose of this note is to give a streamlined proof of this result.

Given $n$ observations from two balanced classes, consider the task of labeling an additional $m$ inputs that are known to all belong to \emph{one} of the two classes. Special cases of this problem are well-known: with complete knowledge of class distributions ($n=\infty$) the problem is solved optimally by the likelihood-ratio test; when $m=1$ it corresponds to binary classification; and when $m\approx n$ it is equivalent to two-sample testing. The intermediate settings occur in the field of likelihood-free inference, where labeled samples are obtained by running forward simulations and the unlabeled sample is collected experimentally. In recent work it was discovered that there is a fundamental trade-off between $m$ and $n$: increasing the data sample $m$ reduces the amount $n$ of training/simulation data needed. In this work we (a) introduce a generalization where unlabeled samples come from a mixture of the two classes -- a case often encountered in practice; (b) study the minimax sample complexity for non-parametric classes of densities under \textit{maximum mean discrepancy} (MMD) separation; and (c) investigate the empirical performance of kernels parameterized by neural networks on two tasks: detection of the Higgs boson and detection of planted DDPM generated images amidst CIFAR-10 images. For both problems we confirm the existence of the theoretically predicted asymmetric $m$ vs $n$ trade-off.

We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.

We provide numerical bounds on the Crouzeix ratiofor KLS matrices $A$ which have a line segment on the boundary of the numerical range. The Crouzeix ratio is the supremum over all polynomials $p$ of the spectral norm of $p(A)$ dividedby the maximum absolute value of $p$ on the numerical range of $A$.Our bounds confirm the conjecture that this ratiois less than or equal to $2$. We also give a precise description of these numerical ranges.

We explore the maximum likelihood degree of a homogeneous polynomial $F$ on a projective variety $X$, $\mathrm{MLD}_F(X)$, which generalizes the concept of Gaussian maximum likelihood degree. We show that $\mathrm{MLD}_F(X)$ is equal to the count of critical points of a rational function on $X$, and give different geometric characterizations of it via topological Euler characteristic, dual varieties, and Chern classes.

We study the convergence of specific inexact alternating projections for two non-convex sets in a Euclidean space. The $\sigma$-quasioptimal metric projection ($\sigma \geq 1$) of a point $x$ onto a set $A$ consists of points in $A$ the distance to which is at most $\sigma$ times larger than the minimal distance $\mathrm{dist}(x,A)$. We prove that quasioptimal alternating projections, when one or both projections are quasioptimal, converge locally and linearly for super-regular sets with transversal intersection. The theory is motivated by the successful application of alternating projections to low-rank matrix and tensor approximation. We focus on two problems -- nonnegative low-rank approximation and low-rank approximation in the maximum norm -- and develop fast alternating-projection algorithms for matrices and tensor trains based on cross approximation and acceleration techniques. The numerical experiments confirm that the proposed methods are efficient and suggest that they can be used to regularise various low-rank computational routines.

Given a graph $G$, a community structure $\mathcal{C}$, and a budget $k$, the fair influence maximization problem aims to select a seed set $S$ ($|S|\leq k$) that maximizes the influence spread while narrowing the influence gap between different communities. While various fairness notions exist, the welfare fairness notion, which balances fairness level and influence spread, has shown promising effectiveness. However, the lack of efficient algorithms for optimizing the welfare fairness objective function restricts its application to small-scale networks with only a few hundred nodes. In this paper, we adopt the objective function of welfare fairness to maximize the exponentially weighted summation over the influenced fraction of all communities. We first introduce an unbiased estimator for the fractional power of the arithmetic mean. Then, by adapting the reverse influence sampling (RIS) approach, we convert the optimization problem to a weighted maximum coverage problem. We also analyze the number of reverse reachable sets needed to approximate the fair influence at a high probability. Further, we present an efficient algorithm that guarantees $1-1/e - \varepsilon$ approximation.

For a graph whose vertices are points in $\mathbb R^d$, consider the closed balls with diameters induced by its edges. The graph is called a Tverberg graph if these closed balls intersect. A max-sum tree of a finite point set $X \subset \mathbb R^d$ is a tree with vertex set $X$ that maximizes the sum of Euclidean distances of its edges among all trees with vertex set $X$. Similarly, a max-sum matching of an even set $X \subset \mathbb R^d$ is a perfect matching of $X$ maximizing the sum of Euclidean distances between the matched points among all perfect matchings of $X$. We prove that a max-sum tree of any finite point set in $\mathbb R^d$ is a Tverberg graph, which generalizes a recent result of Abu-Affash et al., who established this claim in the plane. Additionally, we provide a new proof of a theorem by Bereg et al., which states that a max-sum matching of any even point set in the plane is a Tverberg graph. Moreover, we proved a slightly stronger version of this theorem.

Let $G_n$ be a random geometric graph with vertex set $[n]$ based on $n$ i.i.d.\ random vectors $X_1,\ldots,X_n$ drawn from an unknown density $f$ on $\R^d$. An edge $(i,j)$ is present when $\|X_i -X_j\| \le r_n$, for a given threshold $r_n$ possibly depending upon $n$, where $\| \cdot \|$ denotes Euclidean distance. We study the problem of estimating the dimension $d$ of the underlying space when we have access to the adjacency matrix of the graph but do not know $r_n$ or the vectors $X_i$. The main result of the paper is that there exists an estimator of $d$ that converges to $d$ in probability as $n \to \infty$ for all densities with $\int f^5 < \infty$ whenever $n^{3/2} r_n^d \to \infty$ and $r_n = o(1)$. The conditions allow very sparse graphs since when $n^{3/2} r_n^d \to 0$, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of $d$ exists when $n r_n^d \to \infty$ and $r_n = o(1)$.

We study the fundamental problem of estimating the mean of a $d$-dimensional distribution with covariance $\Sigma \preccurlyeq \sigma^2 I_d$ given $n$ samples. When $d = 1$, Catoni \cite{catoni} showed an estimator with error $(1+o(1)) \cdot \sigma \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$, with probability $1 - \delta$, matching the Gaussian error rate. For $d>1$, a natural estimator outputs the center of the minimum enclosing ball of one-dimensional confidence intervals to achieve a $1-\delta$ confidence radius of $\sqrt{\frac{2 d}{d+1}} \cdot \sigma \left(\sqrt{\frac{d}{n}} + \sqrt{\frac{2 \log \frac{1}{\delta}}{n}}\right)$, incurring a $\sqrt{\frac{2d}{d+1}}$-factor loss over the Gaussian rate. When the $\sqrt{\frac{d}{n}}$ term dominates by a $\sqrt{\log \frac{1}{\delta}}$ factor, \cite{lee2022optimal-highdim} showed an improved estimator matching the Gaussian rate. This raises a natural question: is the Gaussian rate achievable in general? Or is the $\sqrt{\frac{2 d}{d+1}}$ loss \emph{necessary} when the $\sqrt{\frac{2 \log \frac{1}{\delta}}{n}}$ term dominates? We show that the answer to both these questions is \emph{no} -- we show that \emph{some} constant-factor loss over the Gaussian rate is necessary, but construct an estimator that improves over the above naive estimator by a constant factor. We also consider robust estimation, where an adversary is allowed to corrupt an $\epsilon$-fraction of samples arbitrarily: in this case, we show that the above strategy of combining one-dimensional estimates and incurring the $\sqrt{\frac{2d}{d+1}}$-factor \emph{is} optimal in the infinite-sample limit.

北京阿比特科技有限公司