亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For a mobile robot, we present an approach to recognize scenes in arrangements of objects distributed over cluttered environments. Recognition is made possible by letting the robot alternately search for objects and assign found objects to scenes. Our scene model "Implicit Shape Model (ISM) trees" allows us to solve these two tasks together. For the ISM trees, this article presents novel algorithms for recognizing scenes and predicting the poses of searched objects. We define scenes as sets of objects, where some objects are connected by 3-D spatial relations. In previous work, we recognized scenes using single ISMs. However, these ISMs were prone to false positives. To address this problem, we introduced ISM trees, a hierarchical model that includes multiple ISMs. Through the recognition algorithm it contributes, this article ultimately enables the use of ISM trees in scene recognition. We intend to enable users to generate ISM trees from object arrangements demonstrated by humans. The lack of a suitable algorithm is overcome by the introduction of an ISM tree generation algorithm. In scene recognition, it is usually assumed that image data is already available. However, this is not always the case for robots. For this reason, we combined scene recognition and object search in previous work. However, we did not provide an efficient algorithm to link the two tasks. This article introduces such an algorithm that predicts the poses of searched objects with relations. Experiments show that our overall approach enables robots to find and recognize object arrangements that cannot be perceived from a single viewpoint.

相關內容

The goal of 3D pose transfer is to transfer the pose from the source mesh to the target mesh while preserving the identity information (e.g., face, body shape) of the target mesh. Deep learning-based methods improved the efficiency and performance of 3D pose transfer. However, most of them are trained under the supervision of the ground truth, whose availability is limited in real-world scenarios. In this work, we present X-DualNet, a simple yet effective approach that enables unsupervised 3D pose transfer. In X-DualNet, we introduce a generator $G$ which contains correspondence learning and pose transfer modules to achieve 3D pose transfer. We learn the shape correspondence by solving an optimal transport problem without any key point annotations and generate high-quality meshes with our elastic instance normalization (ElaIN) in the pose transfer module. With $G$ as the basic component, we propose a cross consistency learning scheme and a dual reconstruction objective to learn the pose transfer without supervision. Besides that, we also adopt an as-rigid-as-possible deformer in the training process to fine-tune the body shape of the generated results. Extensive experiments on human and animal data demonstrate that our framework can successfully achieve comparable performance as the state-of-the-art supervised approaches.

Monitoring plants and fruits at high resolution play a key role in the future of agriculture. Accurate 3D information can pave the way to a diverse number of robotic applications in agriculture ranging from autonomous harvesting to precise yield estimation. Obtaining such 3D information is non-trivial as agricultural environments are often repetitive and cluttered, and one has to account for the partial observability of fruit and plants. In this paper, we address the problem of jointly estimating complete 3D shapes of fruit and their pose in a 3D multi-resolution map built by a mobile robot. To this end, we propose an online multi-resolution panoptic mapping system where regions of interest are represented with a higher resolution. We exploit data to learn a general fruit shape representation that we use at inference time together with an occlusion-aware differentiable rendering pipeline to complete partial fruit observations and estimate the 7 DoF pose of each fruit in the map. The experiments presented in this paper, evaluated both in the controlled environment and in a commercial greenhouse, show that our novel algorithm yields higher completion and pose estimation accuracy than existing methods, with an improvement of 41% in completion accuracy and 52% in pose estimation accuracy while keeping a low inference time of 0.6s in average.

Image-based table recognition is a challenging task due to the diversity of table styles and the complexity of table structures. Most of the previous methods focus on a non-end-to-end approach which divides the problem into two separate sub-problems: table structure recognition; and cell-content recognition and then attempts to solve each sub-problem independently using two separate systems. In this paper, we propose an end-to-end multi-task learning model for image-based table recognition. The proposed model consists of one shared encoder, one shared decoder, and three separate decoders which are used for learning three sub-tasks of table recognition: table structure recognition, cell detection, and cell-content recognition. The whole system can be easily trained and inferred in an end-to-end approach. In the experiments, we evaluate the performance of the proposed model on two large-scale datasets: FinTabNet and PubTabNet. The experiment results show that the proposed model outperforms the state-of-the-art methods in all benchmark datasets.

Predicting 3D human poses in real-world scenarios, also known as human pose forecasting, is inevitably subject to noisy inputs arising from inaccurate 3D pose estimations and occlusions. To address these challenges, we propose a diffusion-based approach that can predict given noisy observations. We frame the prediction task as a denoising problem, where both observation and prediction are considered as a single sequence containing missing elements (whether in the observation or prediction horizon). All missing elements are treated as noise and denoised with our conditional diffusion model. To better handle long-term forecasting horizon, we present a temporal cascaded diffusion model. We demonstrate the benefits of our approach on four publicly available datasets (Human3.6M, HumanEva-I, AMASS, and 3DPW), outperforming the state-of-the-art. Additionally, we show that our framework is generic enough to improve any 3D pose prediction model as a pre-processing step to repair their inputs and a post-processing step to refine their outputs. The code is available online: \url{//github.com/vita-epfl/DePOSit}.

Object recognition systems are usually trained and evaluated on high resolution images. However, in real world applications, it is common that the images have low resolutions or have small sizes. In this study, we first track the performance of the state-of-the-art deep object recognition network, Faster- RCNN, as a function of image resolution. The results reveals negative effects of low resolution images on recognition performance. They also show that different spatial frequencies convey different information about the objects in recognition process. It means multi-resolution recognition system can provides better insight into optimal selection of features that results in better recognition of objects. This is similar to the mechanisms of the human visual systems that are able to implement multi-scale representation of a visual scene simultaneously. Then, we propose a multi-resolution object recognition framework rather than a single-resolution network. The proposed framework is evaluated on the PASCAL VOC2007 database. The experimental results show the performance of our adapted multi-resolution Faster-RCNN framework outperforms the single-resolution Faster-RCNN on input images with various resolutions with an increase in the mean Average Precision (mAP) of 9.14% across all resolutions and 1.2% on the full-spectrum images. Furthermore, the proposed model yields robustness of the performance over a wide range of spatial frequencies.

In this paper, we address the problem of using visuo-tactile feedback for 6-DoF localization and 3D reconstruction of unknown in-hand objects. We propose FingerSLAM, a closed-loop factor graph-based pose estimator that combines local tactile sensing at finger-tip and global vision sensing from a wrist-mount camera. FingerSLAM is constructed with two constituent pose estimators: a multi-pass refined tactile-based pose estimator that captures movements from detailed local textures, and a single-pass vision-based pose estimator that predicts from a global view of the object. We also design a loop closure mechanism that actively matches current vision and tactile images to previously stored key-frames to reduce accumulated error. FingerSLAM incorporates the two sensing modalities of tactile and vision, as well as the loop closure mechanism with a factor graph-based optimization framework. Such a framework produces an optimized pose estimation solution that is more accurate than the standalone estimators. The estimated poses are then used to reconstruct the shape of the unknown object incrementally by stitching the local point clouds recovered from tactile images. We train our system on real-world data collected with 20 objects. We demonstrate reliable visuo-tactile pose estimation and shape reconstruction through quantitative and qualitative real-world evaluations on 6 objects that are unseen during training.

The generalized inverse Gaussian-Poisson (GIGP) distribution proposed by Sichel in the 1970s has proved to be a flexible fitting tool for diverse frequency data, collectively described using the item production model. In this paper, we identify the limit shape (specified as an incomplete gamma function) of the properly scaled diagrammatic representations of random samples from the GIGP distribution (known as Young diagrams). We also show that fluctuations are asymptotically normal and, moreover, the corresponding empirical random process is approximated via a rescaled Brownian motion in inverted time, with the inhomogeneous time scale determined by the limit shape. Here, the limit is taken as the number of production sources is growing to infinity, coupled with an intrinsic parameter regime ensuring that the mean number of items per source is large. More precisely, for convergence to the limit shape to be valid, this combined growth should be fast enough. In the opposite regime referred to as "chaotic", the empirical random process is approximated by means of an inhomogeneous Poisson process in inverted time. These results are illustrated using both computer simulations and some classic data sets in informetrics.

In this paper, we introduce neural texture learning for 6D object pose estimation from synthetic data and a few unlabelled real images. Our major contribution is a novel learning scheme which removes the drawbacks of previous works, namely the strong dependency on co-modalities or additional refinement. These have been previously necessary to provide training signals for convergence. We formulate such a scheme as two sub-optimisation problems on texture learning and pose learning. We separately learn to predict realistic texture of objects from real image collections and learn pose estimation from pixel-perfect synthetic data. Combining these two capabilities allows then to synthesise photorealistic novel views to supervise the pose estimator with accurate geometry. To alleviate pose noise and segmentation imperfection present during the texture learning phase, we propose a surfel-based adversarial training loss together with texture regularisation from synthetic data. We demonstrate that the proposed approach significantly outperforms the recent state-of-the-art methods without ground-truth pose annotations and demonstrates substantial generalisation improvements towards unseen scenes. Remarkably, our scheme improves the adopted pose estimators substantially even when initialised with much inferior performance.

Pairwise point cloud registration is a critical task for many applications, which heavily depends on finding correct correspondences from the two point clouds. However, the low overlap between input point clouds causes the registration to fail easily, leading to mistaken overlapping and mismatched correspondences, especially in scenes where non-overlapping regions contain similar structures. In this paper, we present a unified bird's-eye view (BEV) model for jointly learning of 3D local features and overlap estimation to fulfill pairwise registration and loop closure. Feature description is performed by a sparse UNet-like network based on BEV representation, and 3D keypoints are extracted by a detection head for 2D locations, and a regression head for heights. For overlap detection, a cross-attention module is applied for interacting contextual information of input point clouds, followed by a classification head to estimate the overlapping region. We evaluate our unified model extensively on the KITTI dataset and Apollo-SouthBay dataset. The experiments demonstrate that our method significantly outperforms existing methods on overlap estimation, especially in scenes with small overlaps. It also achieves top registration performance on both datasets in terms of translation and rotation errors.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司