Advances in quantum computing make Shor's algorithm for factorising numbers ever more tractable. This threatens the security of any cryptographic system which often relies on the difficulty of factorisation. It also threatens methods based on discrete logarithms, such as with the Diffie-Hellman key exchange method. For a cryptographic system to remain secure against a quantum adversary, we need to build methods based on a hard mathematical problem, which are not susceptible to Shor's algorithm and which create Post Quantum Cryptography (PQC). While high-powered computing devices may be able to run these new methods, we need to investigate how well these methods run on limited powered devices. This paper outlines an evaluation framework for PQC within constrained devices, and contributes to the area by providing benchmarks of the front-running algorithms on a popular single-board low-power device.
In the coming years, quantum networks will allow quantum applications to thrive thanks to the new opportunities offered by end-to-end entanglement of qubits on remote hosts via quantum repeaters. On a geographical scale, this will lead to the dawn of the Quantum Internet. While a full-blown deployment is yet to come, the research community is already working on a variety of individual enabling technologies and solutions. In this paper, with the guidance of extensive simulations, we take a broader view and investigate the problems of Quality of Service (QoS) and provisioning in the context of quantum networks, which are very different from their counterparts in classical data networks due to some of their fundamental properties. Our work leads the way towards a new class of studies that will allow the research community to better understand the challenges of quantum networks and their potential commercial exploitation.
We introduce a new constrained optimization method for policy gradient reinforcement learning, which uses two trust regions to regulate each policy update. In addition to using the proximity of one single old policy as the first trust region as done by prior works, we propose to form a second trust region through the construction of another virtual policy that represents a wide range of past policies. We then enforce the new policy to stay closer to the virtual policy, which is beneficial in case the old policy performs badly. More importantly, we propose a mechanism to automatically build the virtual policy from a memory buffer of past policies, providing a new capability for dynamically selecting appropriate trust regions during the optimization process. Our proposed method, dubbed as Memory-Constrained Policy Optimization (MCPO), is examined on a diverse suite of environments including robotic locomotion control, navigation with sparse rewards and Atari games, consistently demonstrating competitive performance against recent on-policy constrained policy gradient methods.
Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications such as augmented reality, multiplayer gaming, and industrial automation. While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast cloud network flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing cloud network control techniques.
Continuous-time measurements are instrumental for a multitude of tasks in quantum engineering and quantum control, including the estimation of dynamical parameters of open quantum systems monitored through the environment. However, such measurements do not extract the maximum amount of information available in the output state, so finding alternative optimal measurement strategies is a major open problem. In this paper we solve this problem in the setting of discrete-time input-output quantum Markov chains. We present an efficient algorithm for optimal estimation of one-dimensional dynamical parameters which consists of an iterative procedure for updating a `measurement filter' operator and determining successive measurement bases for the output units. A key ingredient of the scheme is the use of a coherent quantum absorber as a way to post-process the output after the interaction with the system. This is designed adaptively such that the joint system and absorber stationary state is pure at a reference parameter value. The scheme offers an exciting prospect for optimal continuous-time adaptive measurements, but more work is needed to find realistic practical implementations.
Videos are accessible media for analyzing sports postures and providing feedback to athletes. Existing video-based coaching systems often present feedback on the correctness of poses by augmenting videos with visual markers either manually by a coach or automatically by computing key parameters from poses. However, previewing and augmenting videos limit the analysis and visualization of human poses due to the fixed viewpoints, which confine the observation of captured human movements and cause ambiguity in the augmented feedback. Besides, existing sport-specific systems with embedded bespoke pose attributes can hardly generalize to new attributes; directly overlaying two poses might not clearly visualize the key differences that viewers would like to pursue. To address these issues, we analyze and visualize human pose data with customizable viewpoints and attributes in the context of common biomechanics of running poses, such as joint angles and step distances. Based on existing literature and a formative study, we have designed and implemented a system, VCoach, to provide feedback on running poses for amateurs. VCoach provides automatic low-level comparisons of the running poses between a novice and an expert, and visualizes the pose differences as part-based 3D animations on a human model. Meanwhile, it retains the users' controllability and customizability in high-level functionalities, such as navigating the viewpoint for previewing feedback and defining their own pose attributes through our interface. We conduct a user study to verify our design components and conduct expert interviews to evaluate the usefulness of the system.
Modern web services routinely provide REST APIs for clients to access their functionality. These APIs present unique challenges and opportunities for automated testing, driving the recent development of many techniques and tools that generate test cases for API endpoints using various strategies. Understanding how these techniques compare to one another is difficult, as they have been evaluated on different benchmarks and using different metrics. To fill this gap, we performed an empirical study aimed to understand the landscape in automated testing of REST APIs and guide future research in this area. We first identified, through a systematic selection process, a set of 10 state-of-the-art REST API testing tools that included tools developed by both researchers and practitioners. We then applied these tools to a benchmark of 20 real-world open-source RESTful services and analyzed their performance in terms of code coverage achieved and unique failures triggered. This analysis allowed us to identify strengths, weaknesses, and limitations of the tools considered and of their underlying strategies, as well as implications of our findings for future research in this area.
In recent years, establishing secure visual communications has turned into one of the essential problems for security engineers and researchers. However, only limited novel solutions are provided for image encryption, and limiting the visual cryptography to only limited schemes can bring up negative consequences, especially with emerging quantum computational systems. This paper presents a novel algorithm for establishing secure private visual communication. The proposed method has a layered architecture with several cohesive components, and corresponded with an NP-hard problem, despite its symmetric structure. This two-step technique is not limited to gray-scale pictures, and furthermore, utilizing a lattice structure causes to proposed method has optimal resistance for the post-quantum era, and is relatively secure from the theoretical dimension.
Recent advances in computer vision has led to a growth of interest in deploying visual analytics model on mobile devices. However, most mobile devices have limited computing power, which prohibits them from running large scale visual analytics neural networks. An emerging approach to solve this problem is to offload the computation of these neural networks to computing resources at an edge server. Efficient computation offloading requires optimizing the trade-off between multiple objectives including compressed data rate, analytics performance, and computation speed. In this work, we consider a "split computation" system to offload a part of the computation of the YOLO object detection model. We propose a learnable feature compression approach to compress the intermediate YOLO features with light-weight computation. We train the feature compression and decompression module together with the YOLO model to optimize the object detection accuracy under a rate constraint. Compared to baseline methods that apply either standard image compression or learned image compression at the mobile and perform image decompression and YOLO at the edge, the proposed system achieves higher detection accuracy at the low to medium rate range. Furthermore, the proposed system requires substantially lower computation time on the mobile device with CPU only.
Upcoming HEP experiments, e.g. at the HL-LHC, are expected to increase the volume of generated data by at least one order of magnitude. In order to retain the ability to analyze the influx of data, full exploitation of modern storage hardware and systems, such as low-latency high-bandwidth NVMe devices and distributed object stores, becomes critical. To this end, the ROOT RNTuple I/O subsystem has been designed to address performance bottlenecks and shortcomings of ROOT's current state of the art TTree I/O subsystem. RNTuple provides a backwards-incompatible redesign of the TTree binary format and access API that evolves the ROOT event data I/O for the challenges of the upcoming decades. It focuses on a compact data format, on performance engineering for modern storage hardware, for instance through making parallel and asynchronous I/O calls by default, and on robust interfaces that are easy to use correctly. In this contribution, we evaluate the RNTuple performance for typical HEP analysis tasks. We compare the throughput delivered by RNTuple to popular I/O libraries outside HEP, such as HDF5 and Apache Parquet. We demonstrate the advantages of RNTuple for HEP analysis workflows and provide an outlook on the road to its use in production.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.