亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the first $\varepsilon$-differentially private, computationally efficient algorithm that estimates the means of product distributions over $\{0,1\}^d$ accurately in total-variation distance, whilst attaining the optimal sample complexity to within polylogarithmic factors. The prior work had either solved this problem efficiently and optimally under weaker notions of privacy, or had solved it optimally while having exponential running times.

相關內容

We consider cross-silo federated linear contextual bandit (LCB) problem under differential privacy, where multiple silos (agents) interact with the local users and communicate via a central server to realize collaboration while without sacrificing each user's privacy. We identify three issues in the state-of-the-art: (i) failure of claimed privacy protection and (ii) incorrect regret bound due to noise miscalculation and (iii) ungrounded communication cost. To resolve these issues, we take a two-step principled approach. First, we design an algorithmic framework consisting of a generic federated LCB algorithm and flexible privacy protocols. Then, leveraging the proposed framework, we study federated LCBs under two different privacy constraints. We first establish privacy and regret guarantees under silo-level local differential privacy, which fix the issues present in state-of-the-art algorithm. To further improve the regret performance, we next consider shuffle model of differential privacy, under which we show that our algorithm can achieve nearly ``optimal'' regret without a trusted server. We accomplish this via two different schemes -- one relies on a new result on privacy amplification via shuffling for DP mechanisms and another one leverages the integration of a shuffle protocol for vector sum into the tree-based mechanism, both of which might be of independent interest. Finally, we support our theoretical results with numerical evaluations over contextual bandit instances generated from both synthetic and real-life data.

We study the problem of approximating stationary points of Lipschitz and smooth functions under $(\varepsilon,\delta)$-differential privacy (DP) in both the finite-sum and stochastic settings. A point $\widehat{w}$ is called an $\alpha$-stationary point of a function $F:\mathbb{R}^d\rightarrow\mathbb{R}$ if $\|\nabla F(\widehat{w})\|\leq \alpha$. We provide a new efficient algorithm that finds an $\tilde{O}\big(\big[\frac{\sqrt{d}}{n\varepsilon}\big]^{2/3}\big)$-stationary point in the finite-sum setting, where $n$ is the number of samples. This improves on the previous best rate of $\tilde{O}\big(\big[\frac{\sqrt{d}}{n\varepsilon}\big]^{1/2}\big)$. We also give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk. Our construction finds a $\tilde{O}\big(\frac{1}{n^{1/3}} + \big[\frac{\sqrt{d}}{n\varepsilon}\big]^{1/2}\big)$-stationary point of the population risk in time linear in $n$. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is $\tilde \Theta\big(\frac{1}{\sqrt{n}}+\frac{\sqrt{d}}{n\varepsilon}\big)$. Finally, we show that our methods can be used to provide dimension-independent rates of $O\big(\frac{1}{\sqrt{n}}+\min\big(\big[\frac{\sqrt{rank}}{n\varepsilon}\big]^{2/3},\frac{1}{(n\varepsilon)^{2/5}}\big)\big)$ on population stationarity for Generalized Linear Models (GLM), where $rank$ is the rank of the design matrix, which improves upon the previous best known rate.

The ubiquity of distributed machine learning (ML) in sensitive public domain applications calls for algorithms that protect data privacy, while being robust to faults and adversarial behaviors. Although privacy and robustness have been extensively studied independently in distributed ML, their synthesis remains poorly understood. We present the first tight analysis of the error incurred by any algorithm ensuring robustness against a fraction of adversarial machines, as well as differential privacy (DP) for honest machines' data against any other curious entity. Our analysis exhibits a fundamental trade-off between privacy, robustness, and utility. To prove our lower bound, we consider the case of mean estimation, subject to distributed DP and robustness constraints, and devise reductions to centralized estimation of one-way marginals. We prove our matching upper bound by presenting a new distributed ML algorithm using a high-dimensional robust aggregation rule. The latter amortizes the dependence on the dimension in the error (caused by adversarial workers and DP), while being agnostic to the statistical properties of the data.

In many situations, several agents need to make a sequence of decisions. For example, a group of workers that needs to decide where their weekly meeting should take place. In such situations, a decision-making mechanism must consider fairness notions. In this paper, we analyze the fairness of three known mechanisms: round-robin, maximum Nash welfare, and leximin. We consider both offline and online settings, and concentrate on the fairness notion of proportionality and its relaxations. Specifically, in the offline setting, we show that the three mechanisms fail to find a proportional or approximate-proportional outcome, even if such an outcome exists. We thus introduce a new fairness property that captures this requirement, and show that a variant of the leximin mechanism satisfies the new fairness property. In the online setting, we show that it is impossible to guarantee proportionality or its relaxations. We thus consider a natural restriction on the agents' preferences, and show that the leximin mechanism guarantees the best possible additive approximation to proportionality and satisfies all the relaxations of proportionality.

We present a rigorous methodology for auditing differentially private machine learning algorithms by adding multiple carefully designed examples called canaries. We take a first principles approach based on three key components. First, we introduce Lifted Differential Privacy (LiDP) that expands the definition of differential privacy to handle randomized datasets. This gives us the freedom to design randomized canaries. Second, we audit LiDP by trying to distinguish between the model trained with $K$ canaries versus $K - 1$ canaries in the dataset, leaving one canary out. By drawing the canaries i.i.d., LiDP can leverage the symmetry in the design and reuse each privately trained model to run multiple statistical tests, one for each canary. Third, we introduce novel confidence intervals that take advantage of the multiple test statistics by adapting to the empirical higher-order correlations. Together, this new recipe demonstrates significant improvements in sample complexity, both theoretically and empirically, using synthetic and real data. Further, recent advances in designing stronger canaries can be readily incorporated into the new framework.

We consider repeated multi-unit auctions with uniform pricing, which are widely used in practice for allocating goods such as carbon licenses. In each round, $K$ identical units of a good are sold to a group of buyers that have valuations with diminishing marginal returns. The buyers submit bids for the units, and then a price $p$ is set per unit so that all the units are sold. We consider two variants of the auction, where the price is set to the $K$-th highest bid and $(K+1)$-st highest bid, respectively. We analyze the properties of this auction in both the offline and online settings. In the offline setting, we consider the problem that one player $i$ is facing: given access to a data set that contains the bids submitted by competitors in past auctions, find a bid vector that maximizes player $i$'s cumulative utility on the data set. We design a polynomial time algorithm for this problem, by showing it is equivalent to finding a maximum-weight path on a carefully constructed directed acyclic graph. In the online setting, the players run learning algorithms to update their bids as they participate in the auction over time. Based on our offline algorithm, we design efficient online learning algorithms for bidding. The algorithms have sublinear regret, under both full information and bandit feedback structures. We complement our online learning algorithms with regret lower bounds. Finally, we analyze the quality of the equilibria in the worst case through the lens of the core solution concept in the game among the bidders. We show that the $(K+1)$-st price format is susceptible to collusion among the bidders; meanwhile, the $K$-th price format does not have this issue.

In the literature of high-dimensional central limit theorems, there is a gap between results for general limiting correlation matrix $\Sigma$ and the strongly non-degenerate case. For the general case where $\Sigma$ may be degenerate, under certain light-tail conditions, when approximating a normalized sum of $n$ independent random vectors by the Gaussian distribution $N(0,\Sigma)$ in multivariate Kolmogorov distance, the best-known error rate has been $O(n^{-1/4})$, subject to logarithmic factors of the dimension. For the strongly non-degenerate case, that is, when the minimum eigenvalue of $\Sigma$ is bounded away from 0, the error rate can be improved to $O(n^{-1/2})$ up to a $\log n$ factor. In this paper, we show that the $O(n^{-1/2})$ rate up to a $\log n$ factor can still be achieved in the degenerate case, provided that the minimum eigenvalue of the limiting correlation matrix of any three components is bounded away from 0. We prove our main results using Stein's method in conjunction with previously unexplored inequalities for the integral of the first three derivatives of the standard Gaussian density over convex polytopes. These inequalities were previously known only for hyperrectangles. Our proof demonstrates the connection between the three-components condition and the third moment Berry--Esseen bound.

Federated Learning, as a popular paradigm for collaborative training, is vulnerable against privacy attacks. Different privacy levels regarding users' attitudes need to be satisfied locally, while a strict privacy guarantee for the global model is also required centrally. Personalized Local Differential Privacy (PLDP) is suitable for preserving users' varying local privacy, yet only provides a central privacy guarantee equivalent to the worst-case local privacy level. Thus, achieving strong central privacy as well as personalized local privacy with a utility-promising model is a challenging problem. In this work, a general framework (APES) is built up to strengthen model privacy under personalized local privacy by leveraging the privacy amplification effect of the shuffle model. To tighten the privacy bound, we quantify the heterogeneous contributions to the central privacy user by user. The contributions are characterized by the ability of generating "echos" from the perturbation of each user, which is carefully measured by proposed methods Neighbor Divergence and Clip-Laplace Mechanism. Furthermore, we propose a refined framework (S-APES) with the post-sparsification technique to reduce privacy loss in high-dimension scenarios. To the best of our knowledge, the impact of shuffling on personalized local privacy is considered for the first time. We provide a strong privacy amplification effect, and the bound is tighter than the baseline result based on existing methods for uniform local privacy. Experiments demonstrate that our frameworks ensure comparable or higher accuracy for the global model.

Differentially private synthetic data provide a powerful mechanism to enable data analysis while protecting sensitive information about individuals. However, when the data lie in a high-dimensional space, the accuracy of the synthetic data suffers from the curse of dimensionality. In this paper, we propose a differentially private algorithm to generate low-dimensional synthetic data efficiently from a high-dimensional dataset with a utility guarantee with respect to the Wasserstein distance. A key step of our algorithm is a private principal component analysis (PCA) procedure with a near-optimal accuracy bound that circumvents the curse of dimensionality. Different from the standard perturbation analysis using the Davis-Kahan theorem, our analysis of private PCA works without assuming the spectral gap for the sample covariance matrix.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

北京阿比特科技有限公司