亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, saliency ranking has emerged as a challenging task focusing on assessing the degree of saliency at instance-level. Being subjective, even humans struggle to identify the precise order of all salient instances. Previous approaches undertake the saliency ranking by directly sorting the rank scores of salient instances, which have not explicitly resolved the inherent ambiguities. To overcome this limitation, we propose the ranking by partition paradigm, which segments unordered salient instances into partitions and then ranks them based on the correlations among these partitions. The ranking by partition paradigm alleviates ranking ambiguities in a general sense, as it consistently improves the performance of other saliency ranking models. Additionally, we introduce the Dense Pyramid Transformer (DPT) to enable global cross-scale interactions, which significantly enhances feature interactions with reduced computational burden. Extensive experiments demonstrate that our approach outperforms all existing methods. The code for our method is available at \url{//github.com/ssecv/PSR}.

相關內容

Blockchain technology is apt to facilitate the automation of multi-party cooperations among various players in a decentralized setting, especially in cases where trust among participants is limited. Transactions are stored in a ledger, a replica of which is retained by every node of the blockchain network. The operations saved thereby are thus publicly accessible. While this aspect enhances transparency, reliability, and persistence, it hinders the utilization of public blockchains for process automation as it violates typical confidentiality requirements in corporate settings. To overcome this issue, we propose our approach named Multi-Authority Approach to Transaction Systems for Interoperating Applications (MARTSIA). Based on Multi-Authority Attribute-Based Encryption (MA-ABE), MARTSIA enables read-access control over shared data at the level of message parts. User-defined policies determine whether an actor can interpret the publicly stored information or not, depending on the actor's attributes declared by a consortium of certifiers. Still, all nodes in the blockchain network can attest to the publication of the (encrypted) data. We provide a formal analysis of the security guarantees of MARTSIA, and illustrate the proof-of-concept implementation over multiple blockchain platforms. To demonstrate its interoperability, we showcase its usage in ensemble with a state-of-the-art blockchain-based engine for multi-party process execution, and three real-world decentralized applications in the context of NFT markets, supply chain, and retail.

Learning control policies offline from pre-recorded datasets is a promising avenue for solving challenging real-world problems. However, available datasets are typically of mixed quality, with a limited number of the trajectories that we would consider as positive examples; i.e., high-quality demonstrations. Therefore, we propose a novel iterative learning algorithm for identifying expert trajectories in unlabeled mixed-quality robotics datasets given a minimal set of positive examples, surpassing existing algorithms in terms of accuracy. We show that applying behavioral cloning to the resulting filtered dataset outperforms several competitive offline reinforcement learning and imitation learning baselines. We perform experiments on a range of simulated locomotion tasks and on two challenging manipulation tasks on a real robotic system; in these experiments, our method showcases state-of-the-art performance. Our website: \url{//sites.google.com/view/offline-policy-learning-pubc}.

Resolving semantic ambiguity has long been recognised as a central challenge in the field of machine translation. Recent work on benchmarking translation performance on ambiguous sentences has exposed the limitations of conventional Neural Machine Translation (NMT) systems, which fail to capture many of these cases. Large language models (LLMs) have emerged as a promising alternative, demonstrating comparable performance to traditional NMT models while introducing new paradigms for controlling the target outputs. In this paper, we study the capabilities of LLMs to translate ambiguous sentences containing polysemous words and rare word senses. We also propose two ways to improve the handling of such ambiguity through in-context learning and fine-tuning on carefully curated ambiguous datasets. Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions. Our research provides valuable insights into effectively adapting LLMs for disambiguation during machine translation.

Factorized Databases (FDBs) and the recently introduced Path Multiset Representations (PMRs) both aim at compactly representing results of database queries, and are quite different at first sight. FDBs were developed for the relational database model and represent finite sets of tuples, all of which have the same length. PMRs, on the other hand, were developed for the graph database model and represent possibly infinite multisets of variable-length paths. In this paper, we connect both representations to a common framework that is rooted in formal language theory. In particular, we show why FDBs are a special case of context-free grammars, which allows us to generalize FDBs beyond the standard setting of database relations. Taking into account that PMRs and finite automata are closely connected, this opens up a wide range of questions about tradeoffs between their respective size and the efficiency of query-plan operations on automata/grammar based representations. As a first step, we present here first results on size trade-offs between fundamental variants of automata-based and grammar-based compact representations.

The challenge in sourcing attribution for forgery faces has gained widespread attention due to the rapid development of generative techniques. While many recent works have taken essential steps on GAN-generated faces, more threatening attacks related to identity swapping or expression transferring are still overlooked. And the forgery traces hidden in unknown attacks from the open-world unlabeled faces still remain under-explored. To push the related frontier research, we introduce a new benchmark called Open-World DeepFake Attribution (OW-DFA), which aims to evaluate attribution performance against various types of fake faces under open-world scenarios. Meanwhile, we propose a novel framework named Contrastive Pseudo Learning (CPL) for the OW-DFA task through 1) introducing a Global-Local Voting module to guide the feature alignment of forged faces with different manipulated regions, 2) designing a Confidence-based Soft Pseudo-label strategy to mitigate the pseudo-noise caused by similar methods in unlabeled set. In addition, we extend the CPL framework with a multi-stage paradigm that leverages pre-train technique and iterative learning to further enhance traceability performance. Extensive experiments verify the superiority of our proposed method on the OW-DFA and also demonstrate the interpretability of deepfake attribution task and its impact on improving the security of deepfake detection area.

The recent advance of neural fields, such as neural radiance fields, has significantly pushed the boundary of scene representation learning. Aiming to boost the computation efficiency and rendering quality of 3D scenes, a popular line of research maps the 3D coordinate system to another measuring system, e.g., 2D manifolds and hash tables, for modeling neural fields. The conversion of coordinate systems can be typically dubbed as \emph{gauge transformation}, which is usually a pre-defined mapping function, e.g., orthogonal projection or spatial hash function. This begs a question: can we directly learn a desired gauge transformation along with the neural field in an end-to-end manner? In this work, we extend this problem to a general paradigm with a taxonomy of discrete \& continuous cases, and develop a learning framework to jointly optimize gauge transformations and neural fields. To counter the problem that the learning of gauge transformations can collapse easily, we derive a general regularization mechanism from the principle of information conservation during the gauge transformation. To circumvent the high computation cost in gauge learning with regularization, we directly derive an information-invariant gauge transformation which allows to preserve scene information inherently and yield superior performance. Project: //fnzhan.com/Neural-Gauge-Fields

Learnersourcing involves students generating and sharing learning resources with their peers. When learnersourcing multiple-choice questions, creating explanations for the generated questions is a crucial step as it facilitates a deeper understanding of the related concepts. However, it is often difficult for students to craft effective explanations due to limited subject understanding and a tendency to merely restate the question stem, distractors, and correct answer. To help scaffold this task, in this work we propose a self-reinforcement large-language-model framework, with the goal of generating and evaluating explanations automatically. Comprising three modules, the framework generates student-aligned explanations, evaluates these explanations to ensure their quality and iteratively enhances the explanations. If an explanation's evaluation score falls below a defined threshold, the framework iteratively refines and reassesses the explanation. Importantly, our framework emulates the manner in which students compose explanations at the relevant grade level. For evaluation, we had a human subject-matter expert compare the explanations generated by students with the explanations created by the open-source large language model Vicuna-13B, a version of Vicuna-13B that had been fine-tuned using our method, and by GPT-4. We observed that, when compared to other large language models, GPT-4 exhibited a higher level of creativity in generating explanations. We also found that explanations generated by GPT-4 were ranked higher by the human expert than both those created by the other models and the original student-created explanations. Our findings represent a significant advancement in enriching the learnersourcing experience for students and enhancing the capabilities of large language models in educational applications.

We consider the problem of training private recommendation models with access to public item features. Training with Differential Privacy (DP) offers strong privacy guarantees, at the expense of loss in recommendation quality. We show that incorporating public item features during training can help mitigate this loss in quality. We propose a general approach based on collective matrix factorization (CMF), that works by simultaneously factorizing two matrices: the user feedback matrix (representing sensitive data) and an item feature matrix that encodes publicly available (non-sensitive) item information. The method is conceptually simple, easy to tune, and highly scalable. It can be applied to different types of public item data, including: (1) categorical item features; (2) item-item similarities learned from public sources; and (3) publicly available user feedback. Furthermore, these data modalities can be collectively utilized to fully leverage public data. Evaluating our method on a standard DP recommendation benchmark, we find that using public item features significantly narrows the quality gap between private models and their non-private counterparts. As privacy constraints become more stringent, models rely more heavily on public side features for recommendation. This results in a smooth transition from collaborative filtering to item-based contextual recommendations.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司