亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

General ridge estimators are typical linear estimators in a general linear model. The class of them include some shrinkage estimators in addition to classical linear unbiased estimators such as the ordinary least squares estimator and the weighted least squares estimator. We derive necessary and sufficient conditions under which two typical general ridge estimators coincide. In particular, two noteworthy conditions are added to those from previous studies. The first condition is given as a seemingly column space relationship to the covariance matrix of the error term, and the second one is based on the biases of general ridge estimators. Another problem studied in this paper is to derive an equivalence condition such that equality between two residual sums of squares holds when general ridge estimators are considered.

相關內容

The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess important conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that this family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.

In this work, N\'ed\'elec elements on locally refined meshes with hanging nodes are considered. A crucial aspect is the orientation of the hanging edges and faces. For non-orientable meshes, no solution or implementation has been available to date. The problem statement and corresponding algorithms are described in great detail. As a model problem, the time-harmonic Maxwell's equations are adopted because N\'ed\'elec elements constitute their natural discretization. The algorithms and implementation are demonstrated through two numerical examples on different uniformly and adaptively refined meshes. The implementation is performed within the finite element library deal.II.

This paper proposes two algorithms to impose seepage boundary conditions in the context of Richards' equation for groundwater flows in unsaturated media. Seepage conditions are non-linear boundary conditions, that can be formulated as a set of unilateral constraints on both the pressure head and the water flux at the ground surface, together with a complementarity condition: these conditions in practice require switching between Neumann and Dirichlet boundary conditions on unknown portions on the boundary. Upon realizing the similarities of these conditions with unilateral contact problems in mechanics, we take inspiration from that literature to propose two approaches: the first method relies on a strongly consistent penalization term, whereas the second one is obtained by an hybridization approach, in which the value of the pressure on the surface is treated as a separate set of unknowns. The flow problem is discretized in mixed form with div-conforming elements so that the water mass is preserved. Numerical experiments show the validity of the proposed strategy in handling the seepage boundary conditions on geometries with increasing complexity.

We consider the problem of approximating an unknown function in a nonlinear model class from point evaluations. When obtaining these point evaluations is costly, minimising the required sample size becomes crucial. Recently, an increasing focus has been on employing adaptive sampling strategies to achieve this. These strategies are based on linear spaces related to the nonlinear model class, for which the optimal sampling measures are known. However, the resulting optimal sampling measures depend on an orthonormal basis of the linear space, which is known rarely. Consequently, sampling from these measures is challenging in practice. This manuscript presents a sampling strategy that iteratively refines an estimate of the optimal sampling measure by updating it based on previously drawn samples. This strategy can be performed offline and does not require evaluations of the sought function. We establish convergence and illustrate the practical performance through numerical experiments. Comparing the presented approach with standard Monte Carlo sampling demonstrates a significant reduction in the number of samples required to achieve a good estimation of an orthonormal basis.

While backward error analysis does not generalise straightforwardly to the strong and weak approximation of stochastic differential equations, it extends for the sampling of ergodic dynamics. The calculation of the modified equation relies on tedious calculations and there is no expression of the modified vector field, in opposition to the deterministic setting. We uncover in this paper the Hopf algebra structures associated to the laws of composition and substitution of exotic aromatic S-series, relying on the new idea of clumping. We use these algebraic structures to provide the algebraic foundations of stochastic numerical analysis with S-series, as well as an explicit expression of the modified vector field as an exotic aromatic B-series.

In this work we propose a discretization of the second boundary condition for the Monge-Ampere equation arising in geometric optics and optimal transport. The discretization we propose is the natural generalization of the popular Oliker-Prussner method proposed in 1988. For the discretization of the differential operator, we use a discrete analogue of the subdifferential. Existence, unicity and stability of the solutions to the discrete problem are established. Convergence results to the continuous problem are given.

In the finite difference approximation of the fractional Laplacian the stiffness matrix is typically dense and needs to be approximated numerically. The effect of the accuracy in approximating the stiffness matrix on the accuracy in the whole computation is analyzed and shown to be significant. Four such approximations are discussed. While they are shown to work well with the recently developed grid-over finite difference method (GoFD) for the numerical solution of boundary value problems of the fractional Laplacian, they differ in accuracy, economics to compute, performance of preconditioning, and asymptotic decay away from the diagonal line. In addition, two preconditioners based on sparse and circulant matrices are discussed for the iterative solution of linear systems associated with the stiffness matrix. Numerical results in two and three dimensions are presented.

In this paper, we present a stochastic method for the simulation of Laplace's equation with a mixed boundary condition in planar domains that are polygonal or bounded by circular arcs. We call this method the Reflected Walk-on-Spheres algorithm. The method combines a traditional Walk-on-Spheres algorithm with use of reflections at the Neumann boundaries. We apply our algorithm to simulate numerical conformal mappings from certain quadrilaterals to the corresponding canonical domains, and to compute their conformal moduli. Finally, we give examples of the method on three dimensional polyhedral domains, and use it to simulate the heat flow on an L-shaped insulated polyhedron.

This paper delves into the equivalence problem of Smith forms for multivariate polynomial matrices. Generally speaking, multivariate ($n \geq 2$) polynomial matrices and their Smith forms may not be equivalent. However, under certain specific condition, we derive the necessary and sufficient condition for their equivalence. Let $F\in K[x_1,\ldots,x_n]^{l\times m}$ be of rank $r$, $d_r(F)\in K[x_1]$ be the greatest common divisor of all the $r\times r$ minors of $F$, where $K$ is a field, $x_1,\ldots,x_n$ are variables and $1 \leq r \leq \min\{l,m\}$. Our key findings reveal the result: $F$ is equivalent to its Smith form if and only if all the $i\times i$ reduced minors of $F$ generate $K[x_1,\ldots,x_n]$ for $i=1,\ldots,r$.

A number of recent studies have proposed that linear representations are appropriate for solving nonlinear dynamical systems with quantum computers, which fundamentally act linearly on a wave function in a Hilbert space. Linear representations, such as the Koopman representation and Koopman von Neumann mechanics, have regained attention from the dynamical-systems research community. Here, we aim to present a unified theoretical framework, currently missing in the literature, with which one can compare and relate existing methods, their conceptual basis, and their representations. We also aim to show that, despite the fact that quantum simulation of nonlinear classical systems may be possible with such linear representations, a necessary projection into a feasible finite-dimensional space will in practice eventually induce numerical artifacts which can be hard to eliminate or even control. As a result, a practical, reliable and accurate way to use quantum computation for solving general nonlinear dynamical systems is still an open problem.

北京阿比特科技有限公司