Autonomous vehicles (AVs) rely on the Global Positioning System (GPS) or Global Navigation Satellite Systems (GNSS) for precise (Positioning, Navigation, and Timing) PNT solutions. However, the vulnerability of GPS signals to intentional and unintended threats due to their lack of encryption and weak signal strength poses serious risks, thereby reducing the reliability of AVs. GPS spoofing is a complex and damaging attack that deceives AVs by altering GPS receivers to calculate false position and tracking information leading to misdirection. This study explores a stealthy slow drift GPS spoofing attack, replicating the victim AV's satellite reception pattern while changing pseudo ranges to deceive the AV, particularly during turns. The attack is designed to gradually deviate from the correct route, making real-time detection challenging and jeopardizing user safety. We present a system and study methodology for constructing covert spoofing attacks on AVs, investigating the correlation between original and spoofed pseudo ranges to create effective defenses. By closely following the victim vehicle and using the same satellite signals, the attacker executes the attack precisely. Changing the pseudo ranges confuses the AV, leading it to incorrect destinations while remaining oblivious to the manipulation. The gradual deviation from the actual route further conceals the attack, hindering its swift identification. The experiments showcase a robust correlation between the original and spoofed pseudo ranges, with R square values varying between 0.99 and 1. This strong correlation facilitates effective evaluation and mitigation of spoofing signals.
Various acceleration approaches for Policy Gradient (PG) have been analyzed within the realm of Reinforcement Learning (RL). However, the theoretical understanding of the widely used momentum-based acceleration method on PG remains largely open. In response to this gap, we adapt the celebrated Nesterov's accelerated gradient (NAG) method to policy optimization in RL, termed \textit{Accelerated Policy Gradient} (APG). To demonstrate the potential of APG in achieving fast convergence, we formally prove that with the true gradient and under the softmax policy parametrization, APG converges to an optimal policy at rates: (i) $\tilde{O}(1/t^2)$ with constant step sizes; (ii) $O(e^{-ct})$ with exponentially-growing step sizes. To the best of our knowledge, this is the first characterization of the convergence rates of NAG in the context of RL. Notably, our analysis relies on one interesting finding: Regardless of the parameter initialization, APG ends up entering a locally nearly-concave regime, where APG can significantly benefit from the momentum, within finite iterations. Through numerical validation and experiments on the Atari 2600 benchmarks, we confirm that APG exhibits a $\tilde{O}(1/t^2)$ rate with constant step sizes and a linear convergence rate with exponentially-growing step sizes, significantly improving convergence over the standard PG.
Recent advances in Large Language Models (LLMs) have highlighted the need for robust, comprehensive, and challenging benchmarks. Yet, research on evaluating their Emotional Intelligence (EI) is considerably limited. Existing benchmarks have two major shortcomings: first, they mainly focus on emotion recognition, neglecting essential EI capabilities such as emotion regulation and thought facilitation through emotion understanding; second, they are primarily constructed from existing datasets, which include frequent patterns, explicit information, and annotation errors, leading to unreliable evaluation. We propose EmoBench, a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine EI, including Emotional Understanding and Emotional Application. EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding. Our findings reveal a considerable gap between the EI of existing LLMs and the average human, highlighting a promising direction for future research. Our code and data will be publicly available from //github.com/Sahandfer/EmoBench.
Conversational search, unlike single-turn retrieval tasks, requires understanding the current question within a dialogue context. The common approach of rewrite-then-retrieve aims to decontextualize questions to be self-sufficient for off-the-shelf retrievers, but most existing methods produce sub-optimal query rewrites due to the limited ability to incorporate signals from the retrieval results. To overcome this limitation, we present a novel framework RetPO (Retriever's Preference Optimization), which is designed to optimize a language model (LM) for reformulating search queries in line with the preferences of the target retrieval systems. The process begins by prompting a large LM to produce various potential rewrites and then collects retrieval performance for these rewrites as the retrievers' preferences. Through the process, we construct a large-scale dataset called RF collection, containing Retrievers' Feedback on over 410K query rewrites across 12K conversations. Furthermore, we fine-tune a smaller LM using this dataset to align it with the retrievers' preferences as feedback. The resulting model achieves state-of-the-art performance on two recent conversational search benchmarks, significantly outperforming existing baselines, including GPT-3.5.
Monocular depth estimation from RGB images plays a pivotal role in 3D vision. However, its accuracy can deteriorate in challenging environments such as nighttime or adverse weather conditions. While long-wave infrared cameras offer stable imaging in such challenging conditions, they are inherently low-resolution, lacking rich texture and semantics as delivered by the RGB image. Current methods focus solely on a single modality due to the difficulties to identify and integrate faithful depth cues from both sources. To address these issues, this paper presents a novel approach that identifies and integrates dominant cross-modality depth features with a learning-based framework. Concretely, we independently compute the coarse depth maps with separate networks by fully utilizing the individual depth cues from each modality. As the advantageous depth spreads across both modalities, we propose a novel confidence loss steering a confidence predictor network to yield a confidence map specifying latent potential depth areas. With the resulting confidence map, we propose a multi-modal fusion network that fuses the final depth in an end-to-end manner. Harnessing the proposed pipeline, our method demonstrates the ability of robust depth estimation in a variety of difficult scenarios. Experimental results on the challenging MS$^2$ and ViViD++ datasets demonstrate the effectiveness and robustness of our method.
Collision avoidance algorithms for Autonomous Surface Vehicles (ASV) that follow the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) have been proposed in recent years. However, it may be difficult and unsafe to follow COLREGs in congested waters, where multiple ASVs are navigating in the presence of static obstacles and strong currents, due to the complex interactions. To address this problem, we propose a decentralized multi-ASV collision avoidance policy based on Distributional Reinforcement Learning, which considers the interactions among ASVs as well as with static obstacles and current flows. We evaluate the performance of the proposed Distributional RL based policy against a traditional RL-based policy and two classical methods, Artificial Potential Fields (APF) and Reciprocal Velocity Obstacles (RVO), in simulation experiments, which show that the proposed policy achieves superior performance in navigation safety, while requiring minimal travel time and energy. A variant of our framework that automatically adapts its risk sensitivity is also demonstrated to improve ASV safety in highly congested environments.
Low-Rank Adaptation (LoRA) provides an effective yet efficient solution for fine-tuning large language models (LLM). The modular and plug-and-play nature of LoRA enables the integration of diverse domain-specific LoRAs to enhance the capabilities of LLMs. Previous research on exploiting multiple LoRAs either focuses on specific isolated downstream tasks or fixes the selection of LoRAs during training. However, in real-world scenarios, LLMs receive diverse prompts covering different tasks, and the pool of candidate LoRAs is often dynamically updated. To bridge this gap, we propose LoraRetriever, a retrieve-then-compose framework that adaptively retrieves and composes multiple LoRAs according to the input prompts. LoraRetriever contains three main components: firstly, identifying and retrieving LoRAs relevant to the given input; secondly, formulating strategies for effectively integrating the retrieved LoRAs; and thirdly, developing efficient batch inference to accommodate heterogeneous requests. Experimental results indicate that LoraRetriever consistently outperforms the baselines, highlighting its practical effectiveness and versatility.
Visual Grounding (VG) methods in Visual Question Answering (VQA) attempt to improve VQA performance by strengthening a model's reliance on question-relevant visual information. The presence of such relevant information in the visual input is typically assumed in training and testing. This assumption, however, is inherently flawed when dealing with imperfect image representations common in large-scale VQA, where the information carried by visual features frequently deviates from expected ground-truth contents. As a result, training and testing of VG-methods is performed with largely inaccurate data, which obstructs proper assessment of their potential benefits. In this study, we demonstrate that current evaluation schemes for VG-methods are problematic due to the flawed assumption of availability of relevant visual information. Our experiments show that these methods can be much more effective when evaluation conditions are corrected. Code is provided on GitHub.
The rapidly evolving multimodal Large Language Models (LLMs) urgently require new benchmarks to uniformly evaluate their performance on understanding and textually describing music. However, due to semantic gaps between Music Information Retrieval (MIR) algorithms and human understanding, discrepancies between professionals and the public, and low precision of annotations, existing music description datasets cannot serve as benchmarks. To this end, we present MuChin, the first open-source music description benchmark in Chinese colloquial language, designed to evaluate the performance of multimodal LLMs in understanding and describing music. We established the Caichong Music Annotation Platform (CaiMAP) that employs an innovative multi-person, multi-stage assurance method, and recruited both amateurs and professionals to ensure the precision of annotations and alignment with popular semantics. Utilizing this method, we built a dataset with multi-dimensional, high-precision music annotations, the Caichong Music Dataset (CaiMD), and carefully selected 1,000 high-quality entries to serve as the test set for MuChin. Based on MuChin, we analyzed the discrepancies between professionals and amateurs in terms of music description, and empirically demonstrated the effectiveness of annotated data for fine-tuning LLMs. Ultimately, we employed MuChin to evaluate existing music understanding models on their ability to provide colloquial descriptions of music. All data related to the benchmark and the code for scoring have been open-sourced.
Commercial-off-the-shelf (COTS) components are often preferred over custom Integrated Circuits (ICs) to achieve reduced system development time and cost, easy adoption of new technologies, and replaceability. Unfortunately, the integration of COTS components introduces serious security concerns. None of the entities in the COTS IC supply chain are trusted from a consumer's perspective, leading to a ''zero trust'' threat model. Any of these entities could introduce hidden malicious circuits or hardware Trojans within the component, allowing an attacker in the field to extract secret information (e.g., cryptographic keys) or cause a functional failure. Existing solutions to counter hardware Trojans are inapplicable in such a zero-trust scenario as they assume either the design house or the foundry to be trusted and consider the design to be available for either analysis or modification. In this work, we have proposed a software-oriented countermeasure to ensure the confidentiality of secret assets against hardware Trojans that can be seamlessly integrated in existing COTS microprocessors. The proposed solution does not require any supply chain entity to be trusted and does not require analysis or modification of the IC design. To protect secret assets in an untrusted microprocessor, the proposed method leverages the concept of residue number coding (RNC) to transform the software functions operating on the asset to be fully homomorphic. We have implemented the proposed solution to protect the secret key within the Advanced Encryption Standard (AES) program and presented a detailed security analysis. We also have developed a plugin for the LLVM compiler toolchain that automatically integrates the solution in AES. Finally, we compare the execution time overhead of the operations in the RNC-based technique with comparable homomorphic solutions and demonstrate significant improvement.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.