The noncentral Wishart distribution has become more mainstream in statistics as the prevalence of applications involving sample covariances with underlying multivariate Gaussian populations as dramatically increased since the advent of computers. Multiple sources in the literature deal with local approximations of the noncentral Wishart distribution with respect to its central counterpart. However, no source has yet developed explicit local approximations for the (central) Wishart distribution in terms of a normal analogue, which is important since Gaussian distributions are at the heart of the asymptotic theory for many statistical methods. In this paper, we prove a precise asymptotic expansion for the ratio of the Wishart density to the symmetric matrix-variate normal density with the same mean and covariances. The result is then used to derive an upper bound on the total variation between the corresponding probability measures and to find the pointwise variance of a new density estimator on the space of positive definite matrices with a Wishart asymmetric kernel. For the sake of completeness, we also find expressions for the pointwise bias of our new estimator, the pointwise variance as we move towards the boundary of its support, the mean squared error, the mean integrated squared error away from the boundary, and we prove its asymptotic normality.
Traditional quantile estimators that are based on one or two order statistics are a common way to estimate distribution quantiles based on the given samples. These estimators are robust, but their statistical efficiency is not always good enough. A more efficient alternative is the Harrell-Davis quantile estimator which uses a weighted sum of all order statistics. Whereas this approach provides more accurate estimations for the light-tailed distributions, it's not robust. To be able to customize the trade-off between statistical efficiency and robustness, we could consider a trimmed modification of the Harrell-Davis quantile estimator. In this approach, we discard order statistics with low weights according to the highest density interval of the beta distribution.
The subset sum problem is known to be an NP-hard problem in the field of computer science with the fastest known approach having a run-time complexity of $O(2^{0.3113n})$. A modified version of this problem is known as the perfect sum problem and extends the subset sum idea further. This extension results in additional complexity, making it difficult to compute for a large input. In this paper, I propose a probabilistic approach which approximates the solution to the perfect sum problem by approximating the distribution of potential sums. Since this problem is an extension of the subset sum, our approximation also grants some probabilistic insight into the solution for the subset sum problem. We harness distributional approximations to model the number of subsets which sum to a certain size. These distributional approximations are formulated in two ways: using bounds to justify normal approximation, and approximating the empirical distribution via density estimation. These approximations can be computed in $O(n)$ complexity, and can increase in accuracy with the size of the input data making it useful for large-scale combinatorial problems. Code is available at //github.com/KristofPusztai/PerfectSum.
We provide guarantees for approximate Gaussian Process (GP) regression resulting from two common low-rank kernel approximations: based on random Fourier features, and based on truncating the kernel's Mercer expansion. In particular, we bound the Kullback-Leibler divergence between an exact GP and one resulting from one of the afore-described low-rank approximations to its kernel, as well as between their corresponding predictive densities, and we also bound the error between predictive mean vectors and between predictive covariance matrices computed using the exact versus using the approximate GP. We provide experiments on both simulated data and standard benchmarks to evaluate the effectiveness of our theoretical bounds.
Discrete kernel smoothing is now gaining importance in nonparametric statistics. In this paper, we investigate some asymptotic properties of the normalized discrete associated-kernel estimator of a probability mass function. We show, under some regularity and non-restrictive assumptions on the associated-kernel, that the normalizing random variable converges in mean square to 1. We then derive the consistency and the asymptotic normality of the proposed estimator. Various families of discrete kernels already exhibited satisfy the conditions, including the refined CoM-Poisson which is underdispersed and of second-order. Finally, the first-order binomial kernel is discussed and, surprisingly, its normalized estimator has a suitable asymptotic behaviour through simulations.
Clustering is an essential task to unsupervised learning. It tries to automatically separate instances into coherent subsets. As one of the most well-known clustering algorithms, k-means assigns sample points at the boundary to a unique cluster, while it does not utilize the information of sample distribution or density. Comparably, it would potentially be more beneficial to consider the probability of each sample in a possible cluster. To this end, this paper generalizes k-means to model the distribution of clusters. Our novel clustering algorithm thus models the distributions of distances to centroids over a threshold by Generalized Pareto Distribution (GPD) in Extreme Value Theory (EVT). Notably, we propose the concept of centroid margin distance, use GPD to establish a probability model for each cluster, and perform a clustering algorithm based on the covering probability function derived from GPD. Such a GPD k-means thus enables the clustering algorithm from the probabilistic perspective. Correspondingly, we also introduce a naive baseline, dubbed as Generalized Extreme Value (GEV) k-means. GEV fits the distribution of the block maxima. In contrast, the GPD fits the distribution of distance to the centroid exceeding a sufficiently large threshold, leading to a more stable performance of GPD k-means. Notably, GEV k-means can also estimate cluster structure and thus perform reasonably well over classical k-means. Thus, extensive experiments on synthetic datasets and real datasets demonstrate that GPD k-means outperforms competitors. The github codes are released in //github.com/sixiaozheng/EVT-K-means.
This paper provides a new version of matrix semi-tensor product method based on adjacent transpositions to test symmetric games. The advantage of using adjacent transpositions lies in the great simplification of analysis of symmetric games. By using the new method, new necessary and sufficient conditions for symmetric games are proposed, and a group of bases of a symmetric game space can be easily calculated. Moreover, the testing equations with the minimum number can be concretely determined. Finally, two examples are displayed to show the effectiveness of the proposed method.
We give a review of recent ANOVA-like procedures for testing group differences based on data in a metric space and present a new such procedure. Our statistic is based on the classic Levene's test for detecting differences in dispersion. It uses only pairwise distances of data points and and can be computed quickly and precisely in situations where the computation of barycenters ("generalized means") in the data space is slow, only by approximation or even infeasible. We show the asymptotic normality of our test statistic and present simulation studies for spatial point pattern data, in which we compare the various procedures in a 1-way ANOVA setting. As an application, we perform a 2-way ANOVA on a data set of bubbles in a mineral flotation process.
Though remarkable progress has been achieved in various vision tasks, deep neural networks still suffer obvious performance degradation when tested in out-of-distribution scenarios. We argue that the feature statistics (mean and standard deviation), which carry the domain characteristics of the training data, can be properly manipulated to improve the generalization ability of deep learning models. Common methods often consider the feature statistics as deterministic values measured from the learned features and do not explicitly consider the uncertain statistics discrepancy caused by potential domain shifts during testing. In this paper, we improve the network generalization ability by modeling the uncertainty of domain shifts with synthesized feature statistics during training. Specifically, we hypothesize that the feature statistic, after considering the potential uncertainties, follows a multivariate Gaussian distribution. Hence, each feature statistic is no longer a deterministic value, but a probabilistic point with diverse distribution possibilities. With the uncertain feature statistics, the models can be trained to alleviate the domain perturbations and achieve better robustness against potential domain shifts. Our method can be readily integrated into networks without additional parameters. Extensive experiments demonstrate that our proposed method consistently improves the network generalization ability on multiple vision tasks, including image classification, semantic segmentation, and instance retrieval. The code will be released soon at //github.com/lixiaotong97/DSU.
In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.
This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.