亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Acting is an important decisional function for autonomous robots. Acting relies on skills to implement and to model the activities it oversees: refinement, local recovery, temporal dispatching, external asynchronous events, and commands execution, all done online. While sitting between planning and the robotic platform, acting often relies on programming primitives and an interpreter which executes these skills. Following our experience in providing a formal framework to program the functional components of our robots, we propose a new language, to program the acting skills. This language maps unequivocally into a formal model which can then be used to check properties offline or execute the skills, or more precisely their formal equivalent, and perform runtime verification. We illustrate with a real example how we can program a survey mission for a drone in this new language, prove some formal properties on the program and directly execute the formal model on the drone to perform the mission.

相關內容

Deep learning methods are increasingly becoming instrumental as modeling tools in computational neuroscience, employing optimality principles to build bridges between neural responses and perception or behavior. Developing models that adequately represent uncertainty is however challenging for deep learning methods, which often suffer from calibration problems. This constitutes a difficulty in particular when modeling cortical circuits in terms of Bayesian inference, beyond single point estimates such as the posterior mean or the maximum a posteriori. In this work we systematically studied uncertainty representations in latent representations of variational auto-encoders (VAEs), both in a perceptual task from natural images and in two other canonical tasks of computer vision, finding a poor alignment between uncertainty and informativeness or ambiguities in the images. We next showed how a novel approach which we call explaining-away variational auto-encoders (EA-VAEs), fixes these issues, producing meaningful reports of uncertainty in a variety of scenarios, including interpolation, image corruption, and even out-of-distribution detection. We show EA-VAEs may prove useful both as models of perception in computational neuroscience and as inference tools in computer vision.

We suggest that straight-line programs designed for algebraic computations should be accompanied by a comprehensive complexity analysis that takes into account both the number of fundamental algebraic operations needed, as well as memory requirements arising during evaluation. We introduce an approach for formalising this idea and, as illustration, construct and analyse straight-line programs for the Bruhat decomposition of $d\times d$ matrices with determinant $1$ over a finite field of order $q$ that have length $O(d^2\log(q))$ and require storing only $O(\log(q))$ matrices during evaluation.

Missing data is a common problem in practical settings. Various imputation methods have been developed to deal with missing data. However, even though the label is usually available in the training data, the common practice of imputation usually only relies on the input and ignores the label. In this work, we illustrate how stacking the label into the input can significantly improve the imputation of the input. In addition, we propose a classification strategy that initializes the predicted test label with missing values and stacks the label with the input for imputation. This allows imputing the label and the input at the same time. Also, the technique is capable of handling data training with missing labels without any prior imputation and is applicable to continuous, categorical, or mixed-type data. Experiments show promising results in terms of accuracy.

Surrogate models provide a quick-to-evaluate approximation to complex computational models and are essential for multi-query problems like design optimisation. The inputs of current computational models are usually high-dimensional and uncertain. We consider Bayesian inference for constructing statistical surrogates with input uncertainties and intrinsic dimensionality reduction. The surrogates are trained by fitting to data from prevalent deterministic computational models. The assumed prior probability density of the surrogate is a Gaussian process. We determine the respective posterior probability density and parameters of the posited statistical model using variational Bayes. The non-Gaussian posterior is approximated by a simpler trial density with free variational parameters and the discrepancy between them is measured using the Kullback-Leibler (KL) divergence. We employ the stochastic gradient method to compute the variational parameters and other statistical model parameters by minimising the KL divergence. We demonstrate the accuracy and versatility of the proposed reduced dimension variational Gaussian process (RDVGP) surrogate on illustrative and robust structural optimisation problems with cost functions depending on a weighted sum of the mean and standard deviation of model outputs.

We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly log-concave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.

The use of ML models to predict a user's cognitive state from behavioral data has been studied for various applications which includes predicting the intent to perform selections in VR. We developed a novel technique that uses gaze-based intent models to adapt dwell-time thresholds to aid gaze-only selection. A dataset of users performing selection in arithmetic tasks was used to develop intent prediction models (F1 = 0.94). We developed GazeIntent to adapt selection dwell times based on intent model outputs and conducted an end-user study with returning and new users performing additional tasks with varied selection frequencies. Personalized models for returning users effectively accounted for prior experience and were preferred by 63% of users. Our work provides the field with methods to adapt dwell-based selection to users, account for experience over time, and consider tasks that vary by selection frequency

Algorithmic decision support (ADS), using Machine-Learning-based AI, is becoming a major part of many processes. Organizations introduce ADS to improve decision-making and use available data, thereby possibly limiting deviations from the normative "homo economicus" and the biases that characterize human decision-making. However, a closer look at the development and use of ADS systems in organizational settings reveals that they necessarily involve a series of largely unspecified human decisions. They begin with deliberations for which decisions to use ADS, continue with choices while developing and deploying the ADS, and end with decisions on how to use the ADS output in an organization's operations. The paper presents an overview of these decisions and some relevant behavioral phenomena. It points out directions for further research, which is essential for correctly assessing the processes and their vulnerabilities. Understanding these behavioral aspects is important for successfully implementing ADS in organizations.

Equilibrated fluid-solid-growth (FSGe) is a fast, open source, three-dimensional (3D) computational platform for simulating interactions between instantaneous hemodynamics and long-term vessel wall adaptation through growth and remodeling (G&R). Such models are crucial for capturing adaptations in health and disease and following clinical interventions. In traditional G&R models, this feedback is modeled through highly simplified fluid models, neglecting local variations in blood pressure and wall shear stress (WSS). FSGe overcomes these inherent limitations by strongly coupling the 3D Navier-Stokes equations for blood flow with a 3D equilibrated constrained mixture model (CMMe) for vascular tissue G&R. CMMe allows one to predict long-term evolved mechanobiological equilibria from an original homeostatic state at a computational cost equivalent to that of a standard hyperelastic material model. In illustrative computational examples, we focus on the development of a stable aortic aneurysm in a mouse model to highlight key differences in growth patterns and fluid-solid feedback between FSGe and solid-only G&R models. We show that FSGe is especially important in blood vessels with asymmetric stimuli. Simulation results reveal greater local variation in fluid-derived WSS than in intramural stress (IMS). Thus, differences between FSGe and G&R models became more pronounced with the growing influence of WSS relative to pressure. Future applications in highly localized disease processes, such as for lesion formation in atherosclerosis, can now include spatial and temporal variations of WSS.

This work presents GAL{\AE}XI as a novel, energy-efficient flow solver for the simulation of compressible flows on unstructured meshes leveraging the parallel computing power of modern Graphics Processing Units (GPUs). GAL{\AE}XI implements the high-order Discontinuous Galerkin Spectral Element Method (DGSEM) using shock capturing with a finite-volume subcell approach to ensure the stability of the high-order scheme near shocks. This work provides details on the general code design, the parallelization strategy, and the implementation approach for the compute kernels with a focus on the element local mappings between volume and surface data due to the unstructured mesh. GAL{\AE}XI exhibits excellent strong scaling properties up to 1024 GPUs if each GPU is assigned a minimum of one million degrees of freedom degrees of freedom. To verify its implementation, a convergence study is performed that recovers the theoretical order of convergence of the implemented numerical schemes. Moreover, the solver is validated using both the incompressible and compressible formulation of the Taylor-Green-Vortex at a Mach number of 0.1 and 1.25, respectively. A mesh convergence study shows that the results converge to the high-fidelity reference solution and that the results match the original CPU implementation. Finally, GAL{\AE}XI is applied to a large-scale wall-resolved large eddy simulation of a linear cascade of the NASA Rotor 37. Here, the supersonic region and shocks at the leading edge are captured accurately and robustly by the implemented shock-capturing approach. It is demonstrated that GAL{\AE}XI requires less than half of the energy to carry out this simulation in comparison to the reference CPU implementation. This renders GAL{\AE}XI as a potent tool for accurate and efficient simulations of compressible flows in the realm of exascale computing and the associated new HPC architectures.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司