亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Differential privacy via output perturbation has been a \textit{de facto} standard for releasing query or computation results on sensitive data. However, we identify that all existing Gaussian mechanisms suffer from the curse of full-rank covariance matrices, and hence the expected accuracy losses of these mechanisms equal the trace of the covariance matrix of the noise. To lift this curse, we design a Rank-1 Singular Multivariate Gaussian (R1SMG) mechanism. It achieves $(\epsilon,\delta)$-DP on query results in $\mathbb{R}^M$ by perturbing the results with noise following a singular multivariate Gaussian distribution, whose covariance matrix is a \textbf{randomly} generated rank-1 positive semi-definite matrix. In contrast, the classic Gaussian mechanism and its variants all consider \textbf{deterministic} full-rank covariance matrices. Our idea is motivated by a clue from Dwork et al.'s seminal work on the classic Gaussian mechanism that has been ignored: when projecting multivariate Gaussian noise with a full-rank covariance matrix onto a set of orthonormal basis in $\mathbb{R}^M$, only the coefficient of a single basis can contribute to the privacy guarantee. We make the following contributions. The R1SMG mechanisms achieves $(\epsilon,\delta)$-DP guarantee on query results in $\R^M$, while its expected accuracy loss is lower bounded by $C_R(\Delta_2f)^2$, where $C_R = \frac{2}{\epsilon \psi}$ and $\psi = \Big(\frac{\delta\Gamma(\frac{M-1}{2})}{\sqrt{\pi}\Gamma(\frac{M}{2})}\Big)^{\frac{2}{M-2}}$. We show that $C_R$ has a decreasing trend as $M$ increases, and converges to $\frac{2}{\epsilon}$ as $M$ approaches infinity. Compared with other mechanisms, the R1SMG mechanism is more stable and less likely to generate noise with large magnitude that overwhelms the query results.

相關內容

在概率論和統計學中,協方差矩陣(也稱為自協方差矩陣,色散矩陣,方差矩陣或方差-協方差矩陣)是平方矩陣,給出了給定隨機向量的每對元素之間的協方差。 在矩陣對角線中存在方差,即每個元素與其自身的協方差。

The surge in real-time data collection across various industries has underscored the need for advanced anomaly detection in both univariate and multivariate time series data. Traditional methods, while comprehensive, often struggle to capture the complex interdependencies in such data. This paper introduces TransNAS-TSAD, a novel framework that synergizes transformer architecture with neural architecture search (NAS), enhanced through NSGA-II algorithm optimization. This innovative approach effectively tackles the complexities of both univariate and multivariate time series, balancing computational efficiency with detection accuracy. Our evaluation reveals that TransNAS-TSAD surpasses conventional anomaly detection models, demonstrating marked improvements in diverse data scenarios. We also propose the Efficiency-Accuracy-Complexity Score (EACS) as a new metric for assessing model performance, emphasizing the crucial balance between accuracy and computational resources. TransNAS-TSAD sets a new benchmark in time series anomaly detection, offering a versatile, efficient solution for complex real-world applications. This research paves the way for future developments in the field, highlighting its potential in a wide range of industry applications.

Modeling the ratio of two dependent components as a function of covariates is a frequently pursued objective in observational research. Despite the high relevance of this topic in medical studies, where biomarker ratios are often used as surrogate endpoints for specific diseases, existing models are based on oversimplified assumptions, assuming e.g.\@ independence or strictly positive associations between the components. In this paper, we close this gap in the literature and propose a regression model where the marginal distributions of the two components are linked by Frank copula. A key feature of our model is that it allows for both positive and negative correlations between the components, with one of the model parameters being directly interpretable in terms of Kendall's rank correlation coefficient. We study our method theoretically, evaluate finite sample properties in a simulation study and demonstrate its efficacy in an application to diagnosis of Alzheimer's disease via ratios of amyloid-beta and total tau protein biomarkers.

Active subspace (AS) methods are a valuable tool for understanding the relationship between the inputs and outputs of a Physics simulation. In this paper, an elegant generalization of the traditional ASM is developed to assess the co-activity of two computer models. This generalization, which we refer to as a Co-Active Subspace (C-AS) Method, allows for the joint analysis of two or more computer models allowing for thorough exploration of the alignment (or non-alignment) of the respective gradient spaces. We define co-active directions, co-sensitivity indices, and a scalar ``concordance" metric (and complementary ``discordance" pseudo-metric) and we demonstrate that these are powerful tools for understanding the behavior of a class of computer models, especially when used to supplement traditional AS analysis. Details for efficient estimation of the C-AS and an accompanying R package (github.com/knrumsey/concordance) are provided. Practical application is demonstrated through analyzing a set of simulated rate stick experiments for PBX 9501, a high explosive, offering insights into complex model dynamics.

While conditional diffusion models are known to have good coverage of the data distribution, they still face limitations in output diversity, particularly when sampled with a high classifier-free guidance scale for optimal image quality or when trained on small datasets. We attribute this problem to the role of the conditioning signal in inference and offer an improved sampling strategy for diffusion models that can increase generation diversity, especially at high guidance scales, with minimal loss of sample quality. Our sampling strategy anneals the conditioning signal by adding scheduled, monotonically decreasing Gaussian noise to the conditioning vector during inference to balance diversity and condition alignment. Our Condition-Annealed Diffusion Sampler (CADS) can be used with any pretrained model and sampling algorithm, and we show that it boosts the diversity of diffusion models in various conditional generation tasks. Further, using an existing pretrained diffusion model, CADS achieves a new state-of-the-art FID of 1.70 and 2.31 for class-conditional ImageNet generation at 256$\times$256 and 512$\times$512 respectively.

Although the expenses associated with DNA sequencing have been rapidly decreasing, the current cost of sequencing information stands at roughly $120/GB, which is dramatically more expensive than reading from existing archival storage solutions today. In this work, we aim to reduce not only the cost but also the latency of DNA storage by initiating the study of the DNA coverage depth problem, which aims to reduce the required number of reads to retrieve information from the storage system. Under this framework, our main goal is to understand the effect of error-correcting codes and retrieval algorithms on the required sequencing coverage depth. We establish that the expected number of reads that are required for information retrieval is minimized when the channel follows a uniform distribution. We also derive upper and lower bounds on the probability distribution of this number of required reads and provide a comprehensive upper and lower bound on its expected value. We further prove that for a noiseless channel and uniform distribution, MDS codes are optimal in terms of minimizing the expected number of reads. Additionally, we study the DNA coverage depth problem under the random-access setup, in which the user aims to retrieve just a specific information unit from the entire DNA storage system. We prove that the expected retrieval time is at least k for [n,k] MDS codes as well as for other families of codes. Furthermore, we present explicit code constructions that achieve expected retrieval times below k and evaluate their performance through analytical methods and simulations. Lastly, we provide lower bounds on the maximum expected retrieval time. Our findings offer valuable insights for reducing the cost and latency of DNA storage.

Synthetic data (SD) have garnered attention as a privacy enhancing technology. Unfortunately, there is no standard for quantifying their degree of privacy protection. In this paper, we discuss proposed quantification approaches. This contributes to the development of SD privacy standards; stimulates multi-disciplinary discussion; and helps SD researchers make informed modeling and evaluation decisions.

Extraterrestrial autonomous lander missions increasingly demand adaptive capabilities to handle the unpredictable and diverse nature of the terrain. This paper discusses the deployment of a Deep Meta-Learning with Controlled Deployment Gaps (CoDeGa) trained model for terrain scooping tasks in Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA Jet Propulsion Laboratory. The CoDeGa-powered scooping strategy is designed to adapt to novel terrains, selecting scooping actions based on the available RGB-D image data and limited experience. The paper presents our experiences with transferring the scooping framework with CoDeGa-trained model from a low-fidelity testbed to the high-fidelity OWLAT testbed. Additionally, it validates the method's performance in novel, realistic environments, and shares the lessons learned from deploying learning-based autonomy algorithms for space exploration. Experimental results from OWLAT substantiate the efficacy of CoDeGa in rapidly adapting to unfamiliar terrains and effectively making autonomous decisions under considerable domain shifts, thereby endorsing its potential utility in future extraterrestrial missions.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司