亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The execution of graph algorithms using neural networks has recently attracted significant interest due to promising empirical progress. This motivates further understanding of how neural networks can replicate reasoning steps with relational data. In this work, we study the ability of transformer networks to simulate algorithms on graphs from a theoretical perspective. The architecture we use is a looped transformer with extra attention heads that interact with the graph. We prove by construction that this architecture can simulate individual algorithms such as Dijkstra's shortest path, Breadth- and Depth-First Search, and Kosaraju's strongly connected components, as well as multiple algorithms simultaneously. The number of parameters in the networks does not increase with the input graph size, which implies that the networks can simulate the above algorithms for any graph. Despite this property, we show a limit to simulation in our solution due to finite precision. Finally, we show a Turing Completeness result with constant width when the extra attention heads are utilized.

相關內容

A growing amount of literature critiques the current operationalizations of empathy based on loose definitions of the construct. Such definitions negatively affect dataset quality, model robustness, and evaluation reliability. We propose an empathy evaluation framework that operationalizes empathy close to its psychological origins. The framework measures the variance in responses of LLMs to prompts using existing metrics for empathy and emotional valence. The variance is introduced through the controlled generation of the prompts by varying social biases affecting context understanding, thus impacting empathetic understanding. The control over generation ensures high theoretical validity of the constructs in the prompt dataset. Also, it makes high-quality translation, especially into languages that currently have little-to-no way of evaluating empathy or bias, such as the Slavonic family, more manageable. Using chosen LLMs and various prompt types, we demonstrate the empathy evaluation with the framework, including multiple-choice answers and free generation. The variance in our initial evaluation sample is small and we were unable to measure convincing differences between the empathetic understanding in contexts given by different social groups. However, the results are promising because the models showed significant alterations their reasoning chains needed to capture the relatively subtle changes in the prompts. This provides the basis for future research into the construction of the evaluation sample and statistical methods for measuring the results.

Spiking neural network (SNN) has emerged as a promising paradigm in computational neuroscience and artificial intelligence, offering advantages such as low energy consumption and small memory footprint. However, their practical adoption is constrained by several challenges, prominently among them being performance optimization. In this study, we present a novel approach to enhance the performance of SNN for images through a new coding method that exploits bit plane representation. Our proposed technique is designed to improve the accuracy of SNN without increasing model size. Also, we investigate the impacts of color models of the proposed coding process. Through extensive experimental validation, we demonstrate the effectiveness of our coding strategy in achieving performance gain across multiple datasets. To the best of our knowledge, this is the first research that considers bit planes and color models in the context of SNN. By leveraging the unique characteristics of bit planes, we hope to unlock new potentials in SNNs performance, potentially paving the way for more efficient and effective SNNs models in future researches and applications.

Virtual reality (VR) environments have greatly expanded opportunities for immersive exploration, yet physically navigating these digital spaces remains a significant challenge. In this paper, we present the conceptual framework of NAVIS (Navigating Virtual Spaces with Immersive Scooters), a novel system that utilizes a scooter-based interface to enhance both navigation and interaction within virtual environments. NAVIS combines real-time physical mobility, haptic feedback, and CAVE-like (Cave Automatic Virtual Environment) technology to create a realistic sense of travel and movement, improving both spatial awareness and the overall immersive experience. By offering a more natural and physically engaging method of exploration, NAVIS addresses key limitations found in traditional VR locomotion techniques, such as teleportation or joystick control, which can detract from immersion and realism. This approach highlights the potential of combining physical movement with virtual environments to provide a more intuitive and enjoyable experience for users, opening up new possibilities for applications in gaming, education, and beyond.

Automatic summarization has consistently attracted attention, due to its versatility and wide application in various downstream tasks. Despite its popularity, we find that annotation efforts have largely been disjointed, and have lacked common terminology. Consequently, it is challenging to discover existing resources or identify coherent research directions. To address this, we survey a large body of work spanning 133 datasets in over 100 languages, creating a novel ontology covering sample properties, collection methods and distribution. With this ontology we make key observations, including the lack in accessible high-quality datasets for low-resource languages, and the field's over-reliance on the news domain and on automatically collected distant supervision. Finally, we make available a web interface that allows users to interact and explore our ontology and dataset collection, as well as a template for a summarization data card, which can be used to streamline future research into a more coherent body of work.

Recent advances in large language models (LLMs) show the potential of using LLMs as evaluators for assessing the quality of text generations from LLMs. However, applying LLM evaluators naively to compare or judge between different systems can lead to unreliable results due to the intrinsic win rate estimation bias of LLM evaluators. In order to mitigate this problem, we propose two calibration methods, Bayesian Win Rate Sampling (BWRS) and Bayesian Dawid-Skene, both of which leverage Bayesian inference to more accurately infer the true win rate of generative language models. We empirically validate our methods on six datasets covering story generation, summarization, and instruction following tasks. We show that both our methods are effective in improving the accuracy of win rate estimation using LLMs as evaluators, offering a promising direction for reliable automatic text quality evaluation.

The high-performance computing (HPC) community has recently seen a substantial diversification of hardware platforms and their associated programming models. From traditional multicore processors to highly specialized accelerators, vendors and tool developers back up the relentless progress of those architectures. In the context of scientific programming, it is fundamental to consider performance portability frameworks, i.e., software tools that allow programmers to write code once and run it on different computer architectures without sacrificing performance. We report here on the benefits and challenges of performance portability using a field-line tracing simulation and a particle-in-cell code, two relevant applications in computational plasma physics with applications to magnetically-confined nuclear-fusion energy research. For these applications we report performance results obtained on four HPC platforms with server-class CPUs from Intel (Xeon) and AMD (EPYC), and high-end GPUs from Nvidia and AMD, including the latest Nvidia H100 GPU and the novel AMD Instinct MI300A APU. Our results show that both Kokkos and OpenMP are powerful tools to achieve performance portability and decent "out-of-the-box" performance, even for the very latest hardware platforms. For our applications, Kokkos provided performance portability to the broadest range of hardware architectures from different vendors.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

北京阿比特科技有限公司