亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have emerged as one of the most important breakthroughs in NLP for their impressive skills in language generation and other language-specific tasks. Though LLMs have been evaluated in various tasks, mostly in English, they have not yet undergone thorough evaluation in under-resourced languages such as Bengali (Bangla). To this end, this paper introduces BenLLM-Eval, which consists of a comprehensive evaluation of LLMs to benchmark their performance in the Bengali language that has modest resources. In this regard, we select various important and diverse Bengali NLP tasks, such as text summarization, question answering, paraphrasing, natural language inference, transliteration, text classification, and sentiment analysis for zero-shot evaluation of popular LLMs, namely, GPT-3.5, LLaMA-2-13b-chat, and Claude-2. Our experimental results demonstrate that while in some Bengali NLP tasks, zero-shot LLMs could achieve performance on par, or even better than current SOTA fine-tuned models; in most tasks, their performance is quite poor (with the performance of open-source LLMs like LLaMA-2-13b-chat being significantly bad) in comparison to the current SOTA results. Therefore, it calls for further efforts to develop a better understanding of LLMs in modest-resourced languages like Bengali.

相關內容

Pre-trained Language Models (PLMs) have shown excellent performance on various downstream tasks after fine-tuning. Nevertheless, the escalating concerns surrounding user privacy have posed significant challenges to centralized training reliant on extensive data collection. Federated learning(FL), which only requires training on the clients and aggregates weights on the server without sharing data, has emerged as a solution. However, the substantial parameter size of PLMs places a significant burden on the computational resources of client devices, while also leading to costly communication expenses. Introducing Parameter-Efficient Fine-Tuning(PEFT) into FL can effectively address this problem. However, we observe that the non-IID data in federated learning leads to a gap in performance between the PEFT method and full parameter fine-tuning(FT). To overcome this, we propose FeDeRA, an improvement over the LoRA method in FL. FeDeRA uses the same adapter module as LoRA. However, the difference lies in FeDeRA's initialization of the adapter module by performing Singular Value Decomposition (SVD) on the pre-trained matrix and selecting its principal components. We conducted extensive experiments, using RoBERTa and DeBERTaV3, on three tasks and six datasets, comparing the methods including FT and the other three different PEFT methods. FeDeRA outperforms all other PEFT methods and is comparable to or even surpasses the performance of FT methods. We also deployed federated learning on Jetson AGX Orin and compared the time required by different methods to achieve the target accuracy on specific tasks. Compared to FT, FeDeRA reduces the training time by 95.9%, 97.9%, 96.9%, and 97.3%, 96.5%, and 96.5% respectively on three tasks using RoBERTa and DeBERTaV3. The overall experiments indicate that FeDeRA achieves good performance while also maintaining efficiency.

Language Models (LMs) acquire parametric knowledge from their training process, embedding it within their weights. The increasing scalability of LMs, however, poses significant challenges for understanding a model's inner workings and further for updating or correcting this embedded knowledge without the significant cost of retraining. This underscores the importance of unveiling exactly what knowledge is stored and its association with specific model components. Instance Attribution (IA) and Neuron Attribution (NA) offer insights into this training-acquired knowledge, though they have not been compared systematically. Our study introduces a novel evaluation framework to quantify and compare the knowledge revealed by IA and NA. To align the results of the methods we introduce the attribution method NA-Instances to apply NA for retrieving influential training instances, and IA-Neurons to discover important neurons of influential instances discovered by IA. We further propose a comprehensive list of faithfulness tests to evaluate the comprehensiveness and sufficiency of the explanations provided by both methods. Through extensive experiments and analysis, we demonstrate that NA generally reveals more diverse and comprehensive information regarding the LM's parametric knowledge compared to IA. Nevertheless, IA provides unique and valuable insights into the LM's parametric knowledge, which are not revealed by NA. Our findings further suggest the potential of a synergistic approach of combining the diverse findings of IA and NA for a more holistic understanding of an LM's parametric knowledge.

Augmented Reality (AR) navigation via Head-Mounted Displays (HMDs), particularly AR glasses, is revolutionizing the driving experience by integrating real-time routing information into the driver's field of view. Despite the potential of AR glasses, the question of how to display navigation information on the interface of these devices remains a valuable yet relatively unexplored research area. This study employs a mixed-method approach involving 32 participants, combining qualitative feedback from semi-structured interviews with quantitative data from usability questionnaires in both simulated and real-world scenarios. Highlighting the necessity of real-world testing, the research evaluates the impact of five icon placements on the efficiency and effectiveness of information perception in both environments. The experiment results indicate a preference for non-central icon placements, especially bottom-center in real world, which mostly balances distraction and workload for the driver. Moreover, these findings contribute to the formulation of four specific design implications for augmented reality interfaces and systems. This research advances the understanding of AR glasses in driving assistance and sets the stage for further developments in this emerging technology field.

Generative AI (GenAI) has witnessed remarkable progress in recent years and demonstrated impressive performance in various generation tasks in different domains such as computer vision and computational design. Many researchers have attempted to integrate GenAI into visualization framework, leveraging the superior generative capacity for different operations. Concurrently, recent major breakthroughs in GenAI like diffusion model and large language model have also drastically increase the potential of GenAI4VIS. From a technical perspective, this paper looks back on previous visualization studies leveraging GenAI and discusses the challenges and opportunities for future research. Specifically, we cover the applications of different types of GenAI methods including sequence, tabular, spatial and graph generation techniques for different tasks of visualization which we summarize into four major stages: data enhancement, visual mapping generation, stylization and interaction. For each specific visualization sub-task, we illustrate the typical data and concrete GenAI algorithms, aiming to provide in-depth understanding of the state-of-the-art GenAI4VIS techniques and their limitations. Furthermore, based on the survey, we discuss three major aspects of challenges and research opportunities including evaluation, dataset, and the gap between end-to-end GenAI and generative algorithms. By summarizing different generation algorithms, their current applications and limitations, this paper endeavors to provide useful insights for future GenAI4VIS research.

In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have emerged as powerful tools for many tasks, such as extracting valuable insights from vast amounts of textual data. In this study, we conduct a comparative analysis of LLMs for the extraction of travel customer needs from TripAdvisor posts. Leveraging a diverse range of models, including both open-source and proprietary ones such as GPT-4 and Gemini, we aim to elucidate their strengths and weaknesses in this specialized domain. Through an evaluation process involving metrics such as BERTScore, ROUGE, and BLEU, we assess the performance of each model in accurately identifying and summarizing customer needs. Our findings highlight the efficacy of opensource LLMs, particularly Mistral 7B, in achieving comparable performance to larger closed models while offering affordability and customization benefits. Additionally, we underscore the importance of considering factors such as model size, resource requirements, and performance metrics when selecting the most suitable LLM for customer needs analysis tasks. Overall, this study contributes valuable insights for businesses seeking to leverage advanced NLP techniques to enhance customer experience and drive operational efficiency in the travel industry.

Natural Language Processing (NLP) techniques are being used more frequently to improve high-tech Augmentative and Alternative Communication (AAC), but many of these techniques are integrated without the inclusion of the users' perspectives. As many of these tools are created with children in mind, autistic adults are often neglected in the design of AAC tools to begin with. We conducted in-depth interviews with 12 autistic adults to find the pain points of current AAC and determine what general technological advances they would find helpful. We found that in addition to technological issues, there are many societal issues as well. We found 9 different categories of themes from our interviews: input options, output options, selecting or adapting AAC for a good fit, when to start or swap AAC, benefits (of use), access (to AAC), stumbling blocks for continued use, social concerns, and lack of control. In this paper, we go through these nine categories in depth and then suggest possible guidelines for the NLP community, AAC application makers, and policy makers to improve AAC use for autistic adults.

The advent of Large Language Models (LLM) provides new insights to validate Automated Driving Systems (ADS). In the herein-introduced work, a novel approach to extracting scenarios from naturalistic driving datasets is presented. A framework called Chat2Scenario is proposed leveraging the advanced Natural Language Processing (NLP) capabilities of LLM to understand and identify different driving scenarios. By inputting descriptive texts of driving conditions and specifying the criticality metric thresholds, the framework efficiently searches for desired scenarios and converts them into ASAM OpenSCENARIO and IPG CarMaker text files. This methodology streamlines the scenario extraction process and enhances efficiency. Simulations are executed to validate the efficiency of the approach. The framework is presented based on a user-friendly web app and is accessible via the following link: //github.com/ftgTUGraz/Chat2Scenario.

Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.

Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied action with infinite agent. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

北京阿比特科技有限公司