亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a non-linear Bayesian data assimilation model for the periodic two-dimensional Navier-Stokes equations with initial condition modelled by a Gaussian process prior. We show that if the system is updated with sufficiently many discrete noisy measurements of the velocity field, then the posterior distribution eventually concentrates near the ground truth solution of the time evolution equation, and in particular that the initial condition is recovered consistently by the posterior mean vector field. We further show that the convergence rate can in general not be faster than inverse logarithmic in sample size, but describe specific conditions on the initial conditions when faster rates are possible. In the proofs we provide an explicit quantitative estimate for backward uniqueness of solutions of the two-dimensional Navier-Stokes equations.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

The effect of higher order continuity in the solution field by using NURBS basis function in isogeometric analysis (IGA) is investigated for an efficient mixed finite element formulation for elastostatic beams. It is based on the Hu-Washizu variational principle considering geometrical and material nonlinearities. Here we present a reduced degree of basis functions for the additional fields of the stress resultants and strains of the beam, which are allowed to be discontinuous across elements. This approach turns out to significantly improve the computational efficiency and the accuracy of the results. We consider a beam formulation with extensible directors, where cross-sectional strains are enriched to avoid Poisson locking by an enhanced assumed strain method. In numerical examples, we show the superior per degree-of-freedom accuracy of IGA over conventional finite element analysis, due to the higher order continuity in the displacement field. We further verify the efficient rotational coupling between beams, as well as the path-independence of the results.

The nonlocality of the fractional operator causes numerical difficulties for long time computation of the time-fractional evolution equations. This paper develops a high-order fast time-stepping discontinuous Galerkin finite element method for the time-fractional diffusion equations, which saves storage and computational time. The optimal error estimate $O(N^{-p-1} + h^{m+1} + \varepsilon N^{r\alpha})$ of the current time-stepping discontinuous Galerkin method is rigorous proved, where $N$ denotes the number of time intervals, $p$ is the degree of polynomial approximation on each time subinterval, $h$ is the maximum space step, $r\ge1$, $m$ is the order of finite element space, and $\varepsilon>0$ can be arbitrarily small. Numerical simulations verify the theoretical analysis.

This paper introduces a formulation of the variable density incompressible Navier-Stokes equations by modifying the nonlinear terms in a consistent way. For Galerkin discretizations, the formulation leads to full discrete conservation of mass, squared density, momentum, angular momentum and kinetic energy without the divergence-free constraint being strongly enforced. In addition to favorable conservation properties, the formulation is shown to make the density field invariant to global shifts. The effect of viscous regularizations on conservation properties is also investigated. Numerical tests validate the theory developed in this work. The new formulation shows superior performance compared to other formulations from the literature, both in terms of accuracy for smooth problems and in terms of robustness.

In this work, a Cole-Hopf transformation based fourth-order multiple-relaxation-time lattice Boltzmann (MRT-LB) model for d-dimensional coupled Burgers' equations is developed. We first adopt the Cole-Hopf transformation where an intermediate variable \theta is introduced to eliminate the nonlinear convection terms in the Burgers' equations on the velocity u=(u_1,u_2,...,u_d). In this case, a diffusion equation on the variable \theta can be obtained, and particularly, the velocity u in the coupled Burgers' equations is determined by the variable \theta and its gradient term \nabla\theta. Then we develop a general MRT-LB model with the natural moments for the d-dimensional transformed diffusion equation and present the corresponding macroscopic finite-difference scheme. At the diffusive scaling, the fourth-order modified equation of the developed MRT-LB model is derived through the Maxwell iteration method. With the aid of the free parameters in the MRT-LB model, we find that not only the consistent fourth-order modified equation can be obtained, but also the gradient term $\nabla\theta$ can be calculated locally by the non-equilibrium distribution function with a fourth-order accuracy, this indicates that theoretically, the MRT-LB model for $d$-dimensional coupled Burgers' equations can achieve a fourth-order accuracy in space. Finally, some simulations are conducted to test the MRT-LB model, and the numerical results show that the proposed MRT-LB model has a fourth-order convergence rate, which is consistent with our theoretical analysis.

In this paper, we are concerned with symmetric integrators for the nonlinear relativistic Klein--Gordon (NRKG) equation with a dimensionless parameter $0<\varepsilon\ll 1$, which is inversely proportional to the speed of light. The highly oscillatory property in time of this model corresponds to the parameter $\varepsilon$ and the equation has strong nonlinearity when $\eps$ is small. There two aspects bring significantly numerical burdens in designing numerical methods. We propose and analyze a novel class of symmetric integrators which is based on some formulation approaches to the problem, Fourier pseudo-spectral method and exponential integrators. Two practical integrators up to order four are constructed by using the proposed symmetric property and stiff order conditions of implicit exponential integrators. The convergence of the obtained integrators is rigorously studied, and it is shown that the accuracy in time is improved to be $\mathcal{O}(\varepsilon^{3} \hh^2)$ and $\mathcal{O}(\varepsilon^{4} \hh^4)$ for the time stepsize $\hh$. The near energy conservation over long times is established for the multi-stage integrators by using modulated Fourier expansions. These theoretical results are achievable even if large stepsizes are utilized in the schemes. Numerical results on a NRKG equation show that the proposed integrators have improved uniform error bounds, excellent long time energy conservation and competitive efficiency.

Stochastic optimization methods have been hugely successful in making large-scale optimization problems feasible when computing the full gradient is computationally prohibitive. Using the theory of modified equations for numerical integrators, we propose a class of stochastic differential equations that approximate the dynamics of general stochastic optimization methods more closely than the original gradient flow. Analyzing a modified stochastic differential equation can reveal qualitative insights about the associated optimization method. Here, we study mean-square stability of the modified equation in the case of stochastic coordinate descent.

The analysis of a delayed generalized Burgers-Huxley equation (a non-linear advection-diffusion-reaction problem) with weakly singular kernels is carried out in this work. Moreover, numerical approximations are performed using the conforming finite element method (CFEM). The existence, uniqueness and regularity results for the continuous problem have been discussed in detail using the Faedo-Galerkin approximation technique. For the numerical studies, we first propose a semi-discrete conforming finite element scheme for space discretization and discuss its error estimates under minimal regularity assumptions. We then employ a backward Euler discretization in time and CFEM in space to obtain a fully-discrete approximation. Additionally, we derive a prior error estimates for the fully-discrete approximated solution. Finally, we present computational results that support the derived theoretical results.

We aim to establish Bowen's equations for upper capacity invariance pressure and Pesin-Pitskel invariance pressure of discrete-time control systems. We first introduce a new invariance pressure called induced invariance pressure on partitions that specializes the upper capacity invariance pressure on partitions, and then show that the two types of invariance pressures are related by a Bowen's equation. Besides, to establish Bowen's equation for Pesin-Pitskel invariance pressure on partitions we also introduce a new notion called BS invariance dimension on subsets. Moreover, a variational principle for BS invariance dimension on subsets is established.

Applying parallel-in-time algorithms to multiscale Hamiltonian systems to obtain stable long time simulations is very challenging. In this paper, we present novel data-driven methods aimed at improving the standard parareal algorithm developed by Lion, Maday, and Turinici in 2001, for multiscale Hamiltonian systems. The first method involves constructing a correction operator to improve a given inaccurate coarse solver through solving a Procrustes problem using data collected online along parareal trajectories. The second method involves constructing an efficient, high-fidelity solver by a neural network trained with offline generated data. For the second method, we address the issues of effective data generation and proper loss function design based on the Hamiltonian function. We show proof-of-concept by applying the proposed methods to a Fermi-Pasta-Ulum (FPU) problem. The numerical results demonstrate that the Procrustes parareal method is able to produce solutions that are more stable in energy compared to the standard parareal. The neural network solver can achieve comparable or better runtime performance compared to numerical solvers of similar accuracy. When combined with the standard parareal algorithm, the improved neural network solutions are slightly more stable in energy than the improved numerical coarse solutions.

In this paper, efficient alternating direction implicit (ADI) schemes are proposed to solve three-dimensional heat equations with irregular boundaries and interfaces. Starting from the well-known Douglas-Gunn ADI scheme, a modified ADI scheme is constructed to mitigate the issue of accuracy loss in solving problems with time-dependent boundary conditions. The unconditional stability of the new ADI scheme is also rigorously proven with the Fourier analysis. Then, by combining the ADI schemes with a 1D kernel-free boundary integral (KFBI) method, KFBI-ADI schemes are developed to solve the heat equation with irregular boundaries. In 1D sub-problems of the KFBI-ADI schemes, the KFBI discretization takes advantage of the Cartesian grid and preserves the structure of the coefficient matrix so that the fast Thomas algorithm can be applied to solve the linear system efficiently. Second-order accuracy and unconditional stability of the KFBI-ADI schemes are verified through several numerical tests for both the heat equation and a reaction-diffusion equation. For the Stefan problem, which is a free boundary problem of the heat equation, a level set method is incorporated into the ADI method to capture the time-dependent interface. Numerical examples for simulating 3D dendritic solidification phenomenons are also presented.

北京阿比特科技有限公司